The perinatal period is critical to survival and performance of many organisms. In birds, rapid postnatal growth and sudden exposure to aerial oxygen around hatching markedly affect the chick redox status, with potentially negative consequences on physiology mediated by oxidative stress. In addition, telomere length (TL) undergoes reduction during birds' early life, partly depending on oxidative status. However, relatively few studies have focused specifically on the changes in oxidative status and TL that occur immediately after hatching. In this study of the yellow-legged gull Larus michahellis, we found that chicks undergo a marked increase in plasma total antioxidant capacity and a marked decrease in the concentration of pro-oxidant molecules during the first days after hatching. In addition, TL in erythrocytes decreased by 1 standard deviation over the 4 days post-hatching. Body mass and tarsus length covaried with total antioxidant capacity and concentration of pro-oxidants in a complex way, that partly depended on sex and laying order, suggesting that oxidative status can affect growth. Moreover, TL positively covaried with the concentration of pro-oxidant molecules, possibly because retention of high concentrations of pro-oxidant molecules results from mechanisms of prevention of their negative effects, including reduction in TL. Thus, this study shows that chicks undergo marked variation in oxidative status, which predicts growth and subsequent TL, prompting for more studies of the perinatal changes in the critical posthatching stages.
Perinatal variation and covariation of oxidative status and telomere length in yellow-legged gull chicks / M. Parolini, C.D. Possenti, A. Romano, M. Caprioli, D. Rubolini, N. Saino. - In: CURRENT ZOOLOGY. - ISSN 1674-5507. - 65:5(2019 Oct), pp. 509-516. [10.1093/cz/zoy084]
Perinatal variation and covariation of oxidative status and telomere length in yellow-legged gull chicks
M. Parolini;C.D. Possenti;A. Romano;M. Caprioli;D. Rubolini;N. Saino
2019
Abstract
The perinatal period is critical to survival and performance of many organisms. In birds, rapid postnatal growth and sudden exposure to aerial oxygen around hatching markedly affect the chick redox status, with potentially negative consequences on physiology mediated by oxidative stress. In addition, telomere length (TL) undergoes reduction during birds' early life, partly depending on oxidative status. However, relatively few studies have focused specifically on the changes in oxidative status and TL that occur immediately after hatching. In this study of the yellow-legged gull Larus michahellis, we found that chicks undergo a marked increase in plasma total antioxidant capacity and a marked decrease in the concentration of pro-oxidant molecules during the first days after hatching. In addition, TL in erythrocytes decreased by 1 standard deviation over the 4 days post-hatching. Body mass and tarsus length covaried with total antioxidant capacity and concentration of pro-oxidants in a complex way, that partly depended on sex and laying order, suggesting that oxidative status can affect growth. Moreover, TL positively covaried with the concentration of pro-oxidant molecules, possibly because retention of high concentrations of pro-oxidant molecules results from mechanisms of prevention of their negative effects, including reduction in TL. Thus, this study shows that chicks undergo marked variation in oxidative status, which predicts growth and subsequent TL, prompting for more studies of the perinatal changes in the critical posthatching stages.File | Dimensione | Formato | |
---|---|---|---|
zoy084.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
425.74 kB
Formato
Adobe PDF
|
425.74 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.