Background: The developing zebrafish is an emerging tool in nanomedicine, allowing non-invasive live imaging of the whole animal at higher resolution than is possible in the more commonly used mouse models. In addition, several transgenic fish lines are available endowed with selected cell types expressing fluorescent proteins; this allows nanoparticles to be visualized together with host cells. Methods: Here, we introduce the zebrafish neural tube as a robust injection site for cancer cells, excellently suited for high resolution imaging. We use light and electron microscopy to evaluate cancer growth and to follow the fate of intravenously injected nanoparticles. Findings: Fluorescently labelled mouse melanoma B16 cells, when injected into this structure proliferated rapidly and stimulated angiogenesis of new vessels. In addition, macrophages, but not neutrophils, selectively accumulated in the tumour region. When injected intravenously, nanoparticles made of Cy5-labelled poly(ethylene glycol)-block-poly(2-(diisopropyl amino) ethyl methacrylate) (PEG-PDPA) selectively accumulated in the neural tube cancer region and were seen in individual cancer cells and tumour associated macrophages. Moreover, when doxorubicin was released from PEG-PDPA, in a pH dependant manner, these nanoparticles could strongly reduce toxicity and improve the treatment outcome compared to the free drug in zebrafish xenotransplanted with mouse melanoma B16 or human derived melanoma cells. Interpretation: The zebrafish has the potential of becoming an important intermediate step, before the mouse model, for testing nanomedicines against patient-derived cancer cells.

Real-time imaging of polymersome nanoparticles in zebrafish embryos engrafted with melanoma cancer cells: Localization, toxicity and treatment analysis / A. Kocere, J. Resseguier, J. Wohlmann, F.M. Skjeldal, S. Khan, M. Speth, N.-.K. Dal, M.Y.W. Ng, N. Alonso-Rodriguez, E. Scarpa, L. Rizzello, G. Battaglia, G. Griffiths, F. Fenaroli. - In: EBIOMEDICINE. - ISSN 2352-3964. - 58(2020), pp. 102902.1-102902.12. [10.1016/j.ebiom.2020.102902]

Real-time imaging of polymersome nanoparticles in zebrafish embryos engrafted with melanoma cancer cells: Localization, toxicity and treatment analysis

S. Khan;E. Scarpa;L. Rizzello;
2020

Abstract

Background: The developing zebrafish is an emerging tool in nanomedicine, allowing non-invasive live imaging of the whole animal at higher resolution than is possible in the more commonly used mouse models. In addition, several transgenic fish lines are available endowed with selected cell types expressing fluorescent proteins; this allows nanoparticles to be visualized together with host cells. Methods: Here, we introduce the zebrafish neural tube as a robust injection site for cancer cells, excellently suited for high resolution imaging. We use light and electron microscopy to evaluate cancer growth and to follow the fate of intravenously injected nanoparticles. Findings: Fluorescently labelled mouse melanoma B16 cells, when injected into this structure proliferated rapidly and stimulated angiogenesis of new vessels. In addition, macrophages, but not neutrophils, selectively accumulated in the tumour region. When injected intravenously, nanoparticles made of Cy5-labelled poly(ethylene glycol)-block-poly(2-(diisopropyl amino) ethyl methacrylate) (PEG-PDPA) selectively accumulated in the neural tube cancer region and were seen in individual cancer cells and tumour associated macrophages. Moreover, when doxorubicin was released from PEG-PDPA, in a pH dependant manner, these nanoparticles could strongly reduce toxicity and improve the treatment outcome compared to the free drug in zebrafish xenotransplanted with mouse melanoma B16 or human derived melanoma cells. Interpretation: The zebrafish has the potential of becoming an important intermediate step, before the mouse model, for testing nanomedicines against patient-derived cancer cells.
xenograft; metastasis; delivery; therapy; system
Settore CHIM/08 - Chimica Farmaceutica
Settore CHIM/09 - Farmaceutico Tecnologico Applicativo
Settore BIO/14 - Farmacologia
2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2352396420302772-main.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 4.46 MB
Formato Adobe PDF
4.46 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/772837
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 19
social impact