In the last years, several studies have been focused on elucidate the role of tumor microenvironment (TME) in cancer development and progression. Within TME, cells from adaptive and innate immune system are one of the main abundant components. The dynamic interactions between immune and cancer cells lead to the activation of complex molecular mechanisms that sustain tumor growth. This important cross-talk has been elucidate for several kind of tumors and occurs also in patients with liver cancer, such as hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Liver is well-known to be an important immunological organ with unique microenvironment. Here, in normal conditions, the rich immune-infiltrating cells cooperate with non-parenchymal cells, such as liver sinusoidal endothelial cells and Kupffer cells, favoring self-tolerance against gut antigens. The presence of underling liver immunosuppressive microenvironment highlights the importance to dissect the interaction between HCC and iCCA cells with immune infiltrating cells, in order to understand how this cross-talk promotes tumor growth. Deeper attention is, in fact, focused on immune-based therapy for these tumors, as promising approach to counteract the intrinsic anti-tumor activity of this microenvironment. In this review, we will examine the key pathways underlying TME cell-cell communications, with deeper focus on the role of natural killer cells in primary liver tumors, such as HCC and iCCA, as new opportunities for immune-based therapeutic strategies.

Tumor microenvironment in primary liver tumors : A challenging role of natural killer cells / M.A. Polidoro, J. Mikulak, V. Cazzetta, A. Lleo, D. Mavilio, G. Torzilli, M. Donadon. - In: WORLD JOURNAL OF GASTROENTEROLOGY. - ISSN 1007-9327. - 26:33(2020 Sep 07), pp. 4900-4918. [10.3748/wjg.v26.i33.4900]

Tumor microenvironment in primary liver tumors : A challenging role of natural killer cells

J. Mikulak;V. Cazzetta;A. Lleo;D. Mavilio;G. Torzilli;M. Donadon
2020

Abstract

In the last years, several studies have been focused on elucidate the role of tumor microenvironment (TME) in cancer development and progression. Within TME, cells from adaptive and innate immune system are one of the main abundant components. The dynamic interactions between immune and cancer cells lead to the activation of complex molecular mechanisms that sustain tumor growth. This important cross-talk has been elucidate for several kind of tumors and occurs also in patients with liver cancer, such as hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Liver is well-known to be an important immunological organ with unique microenvironment. Here, in normal conditions, the rich immune-infiltrating cells cooperate with non-parenchymal cells, such as liver sinusoidal endothelial cells and Kupffer cells, favoring self-tolerance against gut antigens. The presence of underling liver immunosuppressive microenvironment highlights the importance to dissect the interaction between HCC and iCCA cells with immune infiltrating cells, in order to understand how this cross-talk promotes tumor growth. Deeper attention is, in fact, focused on immune-based therapy for these tumors, as promising approach to counteract the intrinsic anti-tumor activity of this microenvironment. In this review, we will examine the key pathways underlying TME cell-cell communications, with deeper focus on the role of natural killer cells in primary liver tumors, such as HCC and iCCA, as new opportunities for immune-based therapeutic strategies.
Hepatocellular carcinoma; Immune cells; Intrahepatic cholangiocarcinoma; Natural killer cells; Primary liver cancer; Tumor microenvironment
Settore MED/46 - Scienze Tecniche di Medicina di Laboratorio
Settore MED/04 - Patologia Generale
Settore MED/06 - Oncologia Medica
Settore MED/12 - Gastroenterologia
7-set-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
E:Polidoro M.a. et al. WJG-26-4900.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 10.01 MB
Formato Adobe PDF
10.01 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/772794
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact