We establish a tilting equivalence for rational, homotopy-invariant cohomology theories defined over non-archimedean analytic varieties. More precisely, we prove an equivalence between the categories of motives of rigid analytic varieties over a perfectoid field K of mixed characteristic and over the associated (tilted) perfectoid field Kb of equal characteristic. This can be considered as a motivic generalization of a theorem of Fontaine and Wintenberger, claiming that the Galois groups of K and Kb are isomorphic.
A motivic version of the theorem of Fontaine and Wintenberger / A. Vezzani. - In: COMPOSITIO MATHEMATICA. - ISSN 0010-437X. - 155:1(2019 Jan), pp. 38-88. [10.1112/S0010437X18007595]
A motivic version of the theorem of Fontaine and Wintenberger
A. Vezzani
2019
Abstract
We establish a tilting equivalence for rational, homotopy-invariant cohomology theories defined over non-archimedean analytic varieties. More precisely, we prove an equivalence between the categories of motives of rigid analytic varieties over a perfectoid field K of mixed characteristic and over the associated (tilted) perfectoid field Kb of equal characteristic. This can be considered as a motivic generalization of a theorem of Fontaine and Wintenberger, claiming that the Galois groups of K and Kb are isomorphic.| File | Dimensione | Formato | |
|---|---|---|---|
|
vezzani_motivicFandW_arxiv_10_2018.pdf
accesso aperto
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
655.61 kB
Formato
Adobe PDF
|
655.61 kB | Adobe PDF | Visualizza/Apri |
|
motivic_version_of_the_theorem_of_fontaine_and_wintenberger.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
882.59 kB
Formato
Adobe PDF
|
882.59 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




