Capillarity functionals are parameter invariant functionals defined on classes of two-dimensional parametric surfaces in R3 as the sum of the area integral and a non homogeneous term of suitable form. Here we consider the case of a class of non homogenous terms vanishing at infinity for which the corresponding capillarity functional has no volume-constrained S -type minimal surface. Using variational techniques, we prove existence of extremals characterized as saddle-type critical points.

Existence of isovolumetric S2-type stationary surfaces for capillarity functionals / P. Caldiroli, A. Iacopetti. - In: REVISTA MATEMATICA IBEROAMERICANA. - ISSN 0213-2230. - 34:4(2018), pp. 1685-1709. [10.4171/rmi/1040]

Existence of isovolumetric S2-type stationary surfaces for capillarity functionals

A. Iacopetti
2018

Abstract

Capillarity functionals are parameter invariant functionals defined on classes of two-dimensional parametric surfaces in R3 as the sum of the area integral and a non homogeneous term of suitable form. Here we consider the case of a class of non homogenous terms vanishing at infinity for which the corresponding capillarity functional has no volume-constrained S -type minimal surface. Using variational techniques, we prove existence of extremals characterized as saddle-type critical points.
Isoperimetric problems; parametric surfaces; variational methods; H-bubbles
Settore MAT/05 - Analisi Matematica
2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
Existence_isovolumetric_postprint.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 463.89 kB
Formato Adobe PDF
463.89 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/770360
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact