We consider a discrete Klein–Gordon (dKG) equation on Open image in new window in the limit of the discrete nonlinear Schrödinger (dNLS) equation, for which small-amplitude breathers have precise scaling with respect to the small coupling strength . By using the classical Lyapunov–Schmidt method, we show existence and linear stability of the KG breather from existence and linear stability of the corresponding dNLS soliton. Nonlinear stability, for an exponentially long time scale of the order O(exp(ϵ−1)) , is obtained via the normal form technique, together with higher order approximations of the KG breather through perturbations of the corresponding dNLS soliton.

Existence and Stability of Klein–Gordon Breathers in the Small-Amplitude Limit / D.E. Pelinovsky, T. Penati, S. Paleari (TRENDS IN MATHEMATICS). - In: Mathematics of Wave Phenomena / [a cura di] W. Dörfler, M. Hochbruck, D. Hundertmark, W. Reichel, A. Rieder, R. Schnaubelt, B. Schörkhuber. - Prima edizione. - [s.l] : Birkauser, 2020 Jan 02. - ISBN 9783030471736. - pp. 251-278 [10.1007/978-3-030-47174-3_16]

Existence and Stability of Klein–Gordon Breathers in the Small-Amplitude Limit

T. Penati;S. Paleari
2020

Abstract

We consider a discrete Klein–Gordon (dKG) equation on Open image in new window in the limit of the discrete nonlinear Schrödinger (dNLS) equation, for which small-amplitude breathers have precise scaling with respect to the small coupling strength . By using the classical Lyapunov–Schmidt method, we show existence and linear stability of the KG breather from existence and linear stability of the corresponding dNLS soliton. Nonlinear stability, for an exponentially long time scale of the order O(exp(ϵ−1)) , is obtained via the normal form technique, together with higher order approximations of the KG breather through perturbations of the corresponding dNLS soliton.
Settore MAT/07 - Fisica Matematica
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
PelPenPal19-revised_plain.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 286.83 kB
Formato Adobe PDF
286.83 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/769319
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact