In this paper we consider the monodomain model of cardiac electrophysiology. After an analysis of the well-posedness of the model we determine an asymptotic expansion of the perturbed potential due to the presence of small conductivity inhomogeneities (modelling small ischemic regions in the cardiac tissue) and use it to detect the anomalies from partial boundary measurements. This is done by determining the topological gradient of a suitable boundary misfit functional. The robustness of the algorithm is confirmed by several numerical experiments.

On the determination of ischemic regions in the monodomain model of cardiac electrophysiology from boundary measurements / E. Beretta, C. Cavaterra, L. Ratti. - In: NONLINEARITY. - ISSN 0951-7715. - 33:11(2020), pp. 5659-5685. [10.1088/1361-6544/ab9a1b]

On the determination of ischemic regions in the monodomain model of cardiac electrophysiology from boundary measurements

C. Cavaterra;
2020

Abstract

In this paper we consider the monodomain model of cardiac electrophysiology. After an analysis of the well-posedness of the model we determine an asymptotic expansion of the perturbed potential due to the presence of small conductivity inhomogeneities (modelling small ischemic regions in the cardiac tissue) and use it to detect the anomalies from partial boundary measurements. This is done by determining the topological gradient of a suitable boundary misfit functional. The robustness of the algorithm is confirmed by several numerical experiments.
inverse problems; nonlinear boundary value problem; cardiac electrophysiology
Settore MAT/05 - Analisi Matematica
2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
arXiv_Beretta_Cavaterra_Ratti.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 882.73 kB
Formato Adobe PDF
882.73 kB Adobe PDF Visualizza/Apri
Beretta_2020_Nonlinearity_33_5659.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/769229
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact