Metal-free catalysts are promising candidates for Bio-electrochemical Systems (BESs) due to their high surface area, chemical stability, good electrical conductivity, and enhanced mass-transport capabilities. In this study, biochars derived from olive mill waste (OMW) with and without supercritical CO2 pretreatment, and salted pistachio nut shells, were produced via pyrolysis and/or chemical and physical activation. The catalytic activity towards oxygen reduction reactions (ORR) of the biochars was investigated by cyclic and linear sweep voltammetry in neutral media. The electrochemical characterization of the samples revealed that olive mill waste biochar showed the highest catalytic activity toward ORR, in terms of reaction rate (Epr V vs. RHE = 0.537 ± 0.00), density of active sites, and number of electrons exchanged (ne- E@ −0.6 V vs. RHE = 3.9 ± 0.2). These biochars were used as catalysts in air cathode microbial fuel cells. The power density obtained by MFCs equipped with an OMW cathode achieved a maximum power density of 271 ± 34 mWm−2 (Rext = 250 Ω). This value was approximately 15 times higher than the power density obtained by a commercial carbon black used as control.

Metal-free activated biochar as an oxygen reduction reaction catalyst in single chamber microbial fuel cells / T. Pepè Sciarria, M.A. C de Oliveira, B. Mecheri, A. D’Epifanio, J.L. Goldfarb, F. Adani. - In: JOURNAL OF POWER SOURCES. - ISSN 0378-7753. - 462:(2020 Jun 30), pp. 228183.1-228183.9. [10.1016/j.jpowsour.2020.228183]

Metal-free activated biochar as an oxygen reduction reaction catalyst in single chamber microbial fuel cells

T. Pepè Sciarria
Co-primo
;
F. Adani
Ultimo
2020-06-30

Abstract

Metal-free catalysts are promising candidates for Bio-electrochemical Systems (BESs) due to their high surface area, chemical stability, good electrical conductivity, and enhanced mass-transport capabilities. In this study, biochars derived from olive mill waste (OMW) with and without supercritical CO2 pretreatment, and salted pistachio nut shells, were produced via pyrolysis and/or chemical and physical activation. The catalytic activity towards oxygen reduction reactions (ORR) of the biochars was investigated by cyclic and linear sweep voltammetry in neutral media. The electrochemical characterization of the samples revealed that olive mill waste biochar showed the highest catalytic activity toward ORR, in terms of reaction rate (Epr V vs. RHE = 0.537 ± 0.00), density of active sites, and number of electrons exchanged (ne- E@ −0.6 V vs. RHE = 3.9 ± 0.2). These biochars were used as catalysts in air cathode microbial fuel cells. The power density obtained by MFCs equipped with an OMW cathode achieved a maximum power density of 271 ± 34 mWm−2 (Rext = 250 Ω). This value was approximately 15 times higher than the power density obtained by a commercial carbon black used as control.
olive mill waste; pistachio nutshell; biochar; activated carbon; oxygen reduction reaction; microbial fuel cell
Settore AGR/13 - Chimica Agraria
Settore CHIM/07 - Fondamenti Chimici delle Tecnologie
Article (author)
File in questo prodotto:
File Dimensione Formato  
Pepè Sciarrie et al., 2020 JPS final word.pdf

embargo fino al 30/06/2022

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF Visualizza/Apri
1-s2.0-S0378775320304869-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.64 MB
Formato Adobe PDF
1.64 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/768194
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 30
social impact