A metasomatic horizon (MH) occurs between the metaophiolite (serpentinite and metaophicarbonates) basement and metasedimentary sequence (chaotic rocks and calcschists) of the Lake Miserin Ophiolite, in the high pressure Zermatt-Saas Zone of the Northwestern Alps. Macro- and microstructural analyses combined with petrological and geochemical investigations of the MH and surrounding lithologies unravelled a polyphase blastesis-deformation history, which led to the formation of a complex fabric and minero-chemical alteration of the serpentinite basement-metasediments interface. Dehydration, decarbonation and carbonation interplayed from early Alpine subduction up to HP-LT metamorphic peak (T=550-630 °C, P=1.8-2.5 GPa), to produce a distinctive, pervasive amphibole (tremolite/actinolite) replacement both in carbonate-rich and serpentinite-rich domains pertaining to the MH protoliths, i.e. serpentinite and carbonate-bearing metabreccia of the chaotic rock unit. This characteristic amphibole metasomatism is more pronounced toward the contact with the metaophicarbonates, and the average δ18OVSMOW and δ13CVPDB values of dolomite within the MH (+14.4‰ and +0.7‰ respectively) lie between those of the metaophicarbonates and of calcschist. These results suggest that Mg- H2O-rich fluids from the dehydrating slab, CO2 released by decarbonation and SiO2-rich fluids evolved in calcschists mixed together and circulated mostly along the metaophiolite basement/metasediments interface, where the MH developed and recorded a preferential channel for mixed metamorphic fluid flow. These findings highlight and confirm that the study of metasomatic rocks in convergent systems is crucial to comprehend the behaviour of different fluids circulating, mixing and interacting with lithologies along slab-parallel discontinuities, which act as major fluid conduits for deep volatile recycling.

Metasomatic horizon sealing serpentinite-metasediments pari in the Zermatt-Saas metaophiolite (Northwestern Alps): record of a channel for focussed fluid flow during subduction / F. Rotondo, P. Tartarotti, S. Guerini, G. Della Porta, N. Campomenosi. - In: OFIOLITI. - ISSN 0391-2612. - 46:1(2021 Jan), pp. 1.1-1.25. [10.4454/ofioliti.v46i1.535]

Metasomatic horizon sealing serpentinite-metasediments pari in the Zermatt-Saas metaophiolite (Northwestern Alps): record of a channel for focussed fluid flow during subduction.

P. Tartarotti
Secondo
;
S. Guerini;G. Della Porta
Penultimo
Data Curation
;
2021

Abstract

A metasomatic horizon (MH) occurs between the metaophiolite (serpentinite and metaophicarbonates) basement and metasedimentary sequence (chaotic rocks and calcschists) of the Lake Miserin Ophiolite, in the high pressure Zermatt-Saas Zone of the Northwestern Alps. Macro- and microstructural analyses combined with petrological and geochemical investigations of the MH and surrounding lithologies unravelled a polyphase blastesis-deformation history, which led to the formation of a complex fabric and minero-chemical alteration of the serpentinite basement-metasediments interface. Dehydration, decarbonation and carbonation interplayed from early Alpine subduction up to HP-LT metamorphic peak (T=550-630 °C, P=1.8-2.5 GPa), to produce a distinctive, pervasive amphibole (tremolite/actinolite) replacement both in carbonate-rich and serpentinite-rich domains pertaining to the MH protoliths, i.e. serpentinite and carbonate-bearing metabreccia of the chaotic rock unit. This characteristic amphibole metasomatism is more pronounced toward the contact with the metaophicarbonates, and the average δ18OVSMOW and δ13CVPDB values of dolomite within the MH (+14.4‰ and +0.7‰ respectively) lie between those of the metaophicarbonates and of calcschist. These results suggest that Mg- H2O-rich fluids from the dehydrating slab, CO2 released by decarbonation and SiO2-rich fluids evolved in calcschists mixed together and circulated mostly along the metaophiolite basement/metasediments interface, where the MH developed and recorded a preferential channel for mixed metamorphic fluid flow. These findings highlight and confirm that the study of metasomatic rocks in convergent systems is crucial to comprehend the behaviour of different fluids circulating, mixing and interacting with lithologies along slab-parallel discontinuities, which act as major fluid conduits for deep volatile recycling.
metasomatic rocks, metaophiolites and metaophicarbonates; Jurassic Tethys, subduction, Zermatt-Saas Zone, Northwestern Alps, Italy
Settore GEO/03 - Geologia Strutturale
Settore GEO/07 - Petrologia e Petrografia
Settore GEO/08 - Geochimica e Vulcanologia
gen-2021
24-ott-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
Rotondo et al.2000-pre-proof.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 48.37 MB
Formato Adobe PDF
48.37 MB Adobe PDF Visualizza/Apri
583-Manuscript to be submitted (Text, figures and tables combined as single PDF)-926-1-10-20210129.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 4.07 MB
Formato Adobe PDF
4.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/767791
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact