The aim of this note is twofold. Firstly, we prove an explicit reciprocity law for certain diagonal classes in the ´etale cohomology of the triple product of a modular curve, stated in [8] and used there as a crucial ingredient in the proof of the main results. Secondly, we apply the aforementioned reciprocity law to address the rank-zero case of the equivariant Bloch–Kato conjecture for the self-dual motive of an elliptic newform of weight k > 2. In the special case k = 2, our result gives a self-contained and simpler proof of the main result of [15].
Diagonal classes and the Bloch–Kato conjecture / M. Bertolini, M. Adamo Seveso, R. Venerucci. - In: MÜNSTER JOURNAL OF MATHEMATICS. - ISSN 1867-5778. - 13:2(2020), pp. 317-352.
Titolo: | Diagonal classes and the Bloch–Kato conjecture |
Autori: | |
Settore Scientifico Disciplinare: | Settore MAT/02 - Algebra Settore MAT/03 - Geometria |
Data di pubblicazione: | 2020 |
Rivista: | |
Tipologia: | Article (author) |
Digital Object Identifier (DOI): | http://dx.doi.org/10.17879/90169661145 |
Appare nelle tipologie: | 01 - Articolo su periodico |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
mjm_2020_13_317-352.pdf | Publisher's version/PDF | Open Access Visualizza/Apri |