A growing body of evidences has established that in many cases proteins may preserve most of their function and flexibility in a crystalline environment, and several techniques are today capable to characterize molecular properties of proteins in tightly packed lattices. Intriguingly, in the case of amyloidogenic precursors, the presence of transiently populated states (hidden to conventional crystallographic studies) can be correlated to the pathological fate of the native fold; the low fold stability of the native state is a hallmark of aggregation propensity. It remains unclear, however, to which extent biophysical properties of proteins such as the presence of transient conformations or protein stability characterized in crystallo reflect the protein behavior that is more commonly studied in solution. Here, we address this question by investigating some biophysical properties of a prototypical amyloidogenic system, β2-microglobulin in solution and in microcrystalline state. By combining NMR chemical shifts with molecular dynamics simulations, we confirmed that conformational dynamics of β2-microglobulin native state in the crystal lattice is in keeping with what observed in solution. A comparative study of protein stability in solution and in crystallo is then carried out, monitoring the change in protein secondary structure at increasing temperature by Fourier transform infrared spectroscopy. The increased structural order of the crystalline state contributes to provide better resolved spectral components compared to those collected in solution and crucially, the crystalline samples display thermal stabilities in good agreement with the trend observed in solution. Overall, this work shows that protein stability and occurrence of pathological hidden states in crystals parallel their solution counterpart, confirming the interest of crystals as a platform for the biophysical characterization of processes such as unfolding and aggregation.

Conformational stability and dynamics in crystals recapitulate protein behaviour in solution / B.M. Sala, T. Le Marchand, G. Pintacuda, C. Camilloni, A. Natalello, S. Ricagno. - In: BIOPHYSICAL JOURNAL. - ISSN 0006-3495. - 119:5(2020 Sep), pp. 978-988. [10.1016/j.bpj.2020.07.015]

Conformational stability and dynamics in crystals recapitulate protein behaviour in solution

B.M. Sala
Primo
;
C. Camilloni
;
S. Ricagno
Ultimo
2020

Abstract

A growing body of evidences has established that in many cases proteins may preserve most of their function and flexibility in a crystalline environment, and several techniques are today capable to characterize molecular properties of proteins in tightly packed lattices. Intriguingly, in the case of amyloidogenic precursors, the presence of transiently populated states (hidden to conventional crystallographic studies) can be correlated to the pathological fate of the native fold; the low fold stability of the native state is a hallmark of aggregation propensity. It remains unclear, however, to which extent biophysical properties of proteins such as the presence of transient conformations or protein stability characterized in crystallo reflect the protein behavior that is more commonly studied in solution. Here, we address this question by investigating some biophysical properties of a prototypical amyloidogenic system, β2-microglobulin in solution and in microcrystalline state. By combining NMR chemical shifts with molecular dynamics simulations, we confirmed that conformational dynamics of β2-microglobulin native state in the crystal lattice is in keeping with what observed in solution. A comparative study of protein stability in solution and in crystallo is then carried out, monitoring the change in protein secondary structure at increasing temperature by Fourier transform infrared spectroscopy. The increased structural order of the crystalline state contributes to provide better resolved spectral components compared to those collected in solution and crucially, the crystalline samples display thermal stabilities in good agreement with the trend observed in solution. Overall, this work shows that protein stability and occurrence of pathological hidden states in crystals parallel their solution counterpart, confirming the interest of crystals as a platform for the biophysical characterization of processes such as unfolding and aggregation.
Settore BIO/10 - Biochimica
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
set-2020
24-lug-2020
hdl:2434/758097
Article (author)
File in questo prodotto:
File Dimensione Formato  
0_pre-Proof.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 8.13 MB
Formato Adobe PDF
8.13 MB Adobe PDF Visualizza/Apri
Sala_2020_BJ.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.3 MB
Formato Adobe PDF
2.3 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/758097
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact