This review aims to highlight the important contribution of the cerebellum in the Anticipatory Postural Adjustments (APAs). These are unconscious muscular activities, accompanying every voluntary movement, which are crucial for optimizing motor performance by contrasting any destabilization of the whole body and of each single segment. Moreover, APAs are deeply involved in initiating the displacement of the center of mass in whole-body reaching movements or when starting gait. Here we present literature that illustrates how the peculiar abilities of the cerebellum (i) to predict, and contrast in advance, the upcoming mechanical events; (ii) to adapt motor outputs to the mechanical context, and (iii) to control the temporal relationship between task-relevant events, are all exploited in the APA control. Moreover, recent papers are discussed which underline the key role of cerebellum ontogenesis in the correct maturation of APAs. Finally, on the basis of a survey of animal and human studies about cortical and subcortical compensatory processes that follow brain lesions, we propose a candidate neural network that could compensate for cerebellar deficits and suggest how to verify such a hypothesis.
Overview of the cerebellar function in anticipatory postural adjustments and of the compensatory mechanisms developing in neural dysfunctions / S.M. Marchese, V. Farinelli, F. Bolzoni, R. Esposti, P. Cavallari. - In: APPLIED SCIENCES. - ISSN 2076-3417. - 10:15(2020 Aug 01), pp. 5088.1-5088.15. [10.3390/app10155088]
Overview of the cerebellar function in anticipatory postural adjustments and of the compensatory mechanisms developing in neural dysfunctions
S.M. MarchesePrimo
;V. FarinelliSecondo
;F. Bolzoni;R. Esposti
Penultimo
;P. CavallariUltimo
2020
Abstract
This review aims to highlight the important contribution of the cerebellum in the Anticipatory Postural Adjustments (APAs). These are unconscious muscular activities, accompanying every voluntary movement, which are crucial for optimizing motor performance by contrasting any destabilization of the whole body and of each single segment. Moreover, APAs are deeply involved in initiating the displacement of the center of mass in whole-body reaching movements or when starting gait. Here we present literature that illustrates how the peculiar abilities of the cerebellum (i) to predict, and contrast in advance, the upcoming mechanical events; (ii) to adapt motor outputs to the mechanical context, and (iii) to control the temporal relationship between task-relevant events, are all exploited in the APA control. Moreover, recent papers are discussed which underline the key role of cerebellum ontogenesis in the correct maturation of APAs. Finally, on the basis of a survey of animal and human studies about cortical and subcortical compensatory processes that follow brain lesions, we propose a candidate neural network that could compensate for cerebellar deficits and suggest how to verify such a hypothesis.File | Dimensione | Formato | |
---|---|---|---|
applsci-10-05088-v3.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
1.6 MB
Formato
Adobe PDF
|
1.6 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.