In the context of regular unital categories we introduce an intrinsic version of the notion of a Schreier split epimorphism, originally considered for monoids. We show that such split epimorphisms satisfy the same homological properties as Schreier split epimorphisms of monoids do. This gives rise to new examples of S-protomodular categories, and allows us to better understand the homological behaviour of monoids from a categorical perspective.
Intrinsic Schreier Split Extensions / A. Montoli, D. Rodelo, T. Van der Linden. - In: APPLIED CATEGORICAL STRUCTURES. - ISSN 0927-2852. - 28:3(2020 Jun 01), pp. 517-538.
Intrinsic Schreier Split Extensions
A. Montoli;
2020
Abstract
In the context of regular unital categories we introduce an intrinsic version of the notion of a Schreier split epimorphism, originally considered for monoids. We show that such split epimorphisms satisfy the same homological properties as Schreier split epimorphisms of monoids do. This gives rise to new examples of S-protomodular categories, and allows us to better understand the homological behaviour of monoids from a categorical perspective.File | Dimensione | Formato | |
---|---|---|---|
ise revised.pdf
Open Access dal 02/06/2021
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
495.29 kB
Formato
Adobe PDF
|
495.29 kB | Adobe PDF | Visualizza/Apri |
Montoli2020_Article_IntrinsicSchreierSplitExtensio.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
429 kB
Formato
Adobe PDF
|
429 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.