We introduce a simple class of mean-field games with absorbing boundary over a finite time horizon. In the corresponding N-player games, the evolution of players’ states is described by a system of weakly interacting Itô equations with absorption on first exit from a bounded open set. Once a player exits, her/his contribution is removed from the empirical measure of the system. Players thus interact through a renormalized empirical measure. In the definition of solution to the mean-field game, the renormalization appears in form of a conditional law. We justify our definition of solution in the usual way, that is, by showing that a solution of the mean-field game induces approximate Nash equilibria for the N-player games with approximation error tending to zero as N tends to infinity. This convergence is established provided the diffusion coefficient is nondegenerate. The degenerate case is more delicate and gives rise to counter-examples.
N-player games and mean-field games with absorption / L. Campi, M. Fischer. - In: THE ANNALS OF APPLIED PROBABILITY. - ISSN 1050-5164. - 28:4(2018), pp. 2188-2242.
N-player games and mean-field games with absorption
L. Campi
;
2018
Abstract
We introduce a simple class of mean-field games with absorbing boundary over a finite time horizon. In the corresponding N-player games, the evolution of players’ states is described by a system of weakly interacting Itô equations with absorption on first exit from a bounded open set. Once a player exits, her/his contribution is removed from the empirical measure of the system. Players thus interact through a renormalized empirical measure. In the definition of solution to the mean-field game, the renormalization appears in form of a conditional law. We justify our definition of solution in the usual way, that is, by showing that a solution of the mean-field game induces approximate Nash equilibria for the N-player games with approximation error tending to zero as N tends to infinity. This convergence is established provided the diffusion coefficient is nondegenerate. The degenerate case is more delicate and gives rise to counter-examples.File | Dimensione | Formato | |
---|---|---|---|
published version AAP1354.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
480.69 kB
Formato
Adobe PDF
|
480.69 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.