Multivalent interactions between complex carbohydrates and oligomeric C-type lectins govern a wide range of immune responses. Up to date, standard SPR (surface plasmon resonance) competitive assays have largely been to evaluate binding properties from monosaccharide units (low affinity, mM) to multivalent elemental antagonists (moderate affinity, mu M). Herein, we report typical case-studies of SPR competitive assays showing that they underestimate the potency of glycoclusters to inhibit the interaction between DC-SIGN and immobilized glycoconjugates. This paper describes the design and implementation of a SPR direct interaction over DC-SIGN oriented surfaces, extendable to other C-type lectin surfaces as such Langerin. This setup provides an overview of intrinsic avidity generation emanating simultaneously from multivalent glycoclusters and from DC-SIGN tetramers organized in nanoclusters at the cell membrane. To do so, covalent biospecific capture of DC-SIGNviaStreptagII/StrepTactin interaction preserves tetrameric DC-SIGN, accessibility and topology of its active sites, that would have been dissociated using standard EDC-NHS procedure under acidic conditions. From the tested glycoclusters libraries, we demonstrated that the scaffold architecture, the valency and the glycomimetic-based ligand are crucial to reach nanomolar affinities for DC-SIGN. The glycocluster3 center dot Dillustrates the tightest binding partner in this set for a DC-SIGN surface (K-D= 18 nM). Moreover, the selectivity at monovalent scale of glycomimeticDcan be easily analyzed at multivalent scale comparing its binding over different C-type lectin immobilized surfaces. This approach may give rise to novel insights into the multivalent binding mechanisms responsible for avidity and make a major contribution to the full characterization of the binding potency of promising specific and multivalent immodulators.

Development of C-type lectin-oriented surfaces for high avidity glycoconjugates: towards mimicking multivalent interactions on the cell surface / V. Porkolab, C. Pifferi, I. Sutkeviciute, S. Ordanini, M. Taouai, M. Thépaut, C. Vivès, M. Benazza, A. Bernardi, O. Renaudet, F. Fieschi. - In: ORGANIC & BIOMOLECULAR CHEMISTRY. - ISSN 1477-0520. - 18:25(2020 Jul 07), pp. 4763-4772. [10.1039/D0OB00781A]

Development of C-type lectin-oriented surfaces for high avidity glycoconjugates: towards mimicking multivalent interactions on the cell surface

S. Ordanini;A. Bernardi;
2020

Abstract

Multivalent interactions between complex carbohydrates and oligomeric C-type lectins govern a wide range of immune responses. Up to date, standard SPR (surface plasmon resonance) competitive assays have largely been to evaluate binding properties from monosaccharide units (low affinity, mM) to multivalent elemental antagonists (moderate affinity, mu M). Herein, we report typical case-studies of SPR competitive assays showing that they underestimate the potency of glycoclusters to inhibit the interaction between DC-SIGN and immobilized glycoconjugates. This paper describes the design and implementation of a SPR direct interaction over DC-SIGN oriented surfaces, extendable to other C-type lectin surfaces as such Langerin. This setup provides an overview of intrinsic avidity generation emanating simultaneously from multivalent glycoclusters and from DC-SIGN tetramers organized in nanoclusters at the cell membrane. To do so, covalent biospecific capture of DC-SIGNviaStreptagII/StrepTactin interaction preserves tetrameric DC-SIGN, accessibility and topology of its active sites, that would have been dissociated using standard EDC-NHS procedure under acidic conditions. From the tested glycoclusters libraries, we demonstrated that the scaffold architecture, the valency and the glycomimetic-based ligand are crucial to reach nanomolar affinities for DC-SIGN. The glycocluster3 center dot Dillustrates the tightest binding partner in this set for a DC-SIGN surface (K-D= 18 nM). Moreover, the selectivity at monovalent scale of glycomimeticDcan be easily analyzed at multivalent scale comparing its binding over different C-type lectin immobilized surfaces. This approach may give rise to novel insights into the multivalent binding mechanisms responsible for avidity and make a major contribution to the full characterization of the binding potency of promising specific and multivalent immodulators.
DC-SIGN; glycomimetics; carbohydrates; Surface Plasmon Resonance;
Settore CHIM/06 - Chimica Organica
7-lug-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
d0ob00781a.pdf

solo utenti autorizzati

Tipologia: Publisher's version/PDF
Dimensione 2.11 MB
Formato Adobe PDF
2.11 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
780452v1.full.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 2.93 MB
Formato Adobe PDF
2.93 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/746641
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 24
social impact