Knowledge on mode-of-action (MOA) is required to understand toxicological effects of compounds, notably in the context of risk assessment of mixtures. Such information is generally scarce, and often complicated by the existence of multiple MOAs per compound. Here, MOAs related to developmental craniofacial malformations were derived from literature, and assembled in a MOA network. A selection of gene expression markers was based on these MOAs. Next, these markers were verified by qPCR in zebrafish embryos, after exposure to reference compounds. These were: triazoles for inhibition of retinoic acid (RA) metabolism, AM580 and CD3254 for selective activation of respectively RA-receptor (RAR) and retinoid-X-receptor (RXR), dithiocarbamates for inhibition of lysyl oxidase, TCDD for activation of the aryl-hydrocarbon-receptor (AhR), VPA for inhibition of histone deacetylase (HDAC), and PFOS for activation of peroxisome proliferator-activated receptor-alpha (PPARα). Next, marker gene profiles for these reference compounds were used to map the profiles of test compounds to known MOAs. In this way, 2,4-dinitrophenol matched with the TCDD and RAR profiles, boric acid with RAR, endosulfan with PFOS, fenpropimorph with dithiocarbamates, PCB126 with AhR, and RA with triazoles and RAR profiles. Prochloraz showed no match. Activities of these compounds in ToxCast assays, and in silico analysis of binding affinity to the respective targets showed limited concordance with the marker gene expression profiles, but still confirmed the complex MOA profiles of reference and test compounds. Ultimately, this approach could be used to support modeling of mixture effects based on upfront knowledge of (dis)similarity of MOAs

Distinguishing mode of action of compounds inducing craniofacial malformations in zebrafish embryos to support dose-response modeling in combined exposures / H.J. Heusinkveld, W.G. Schoonen, H.M. Hodemaekers, A. Nugraha, J. Sirks, V. Veenma, C. Sujan, J.L.A. Pennings, P.F. Wackers, L. Palazzolo, I. Eberini, E. Rorije, L.T.M. van der Ven. - In: REPRODUCTIVE TOXICOLOGY. - ISSN 0890-6238. - 96(2020 Sep), pp. 114-127.

Distinguishing mode of action of compounds inducing craniofacial malformations in zebrafish embryos to support dose-response modeling in combined exposures

L. Palazzolo;I. Eberini;
2020

Abstract

Knowledge on mode-of-action (MOA) is required to understand toxicological effects of compounds, notably in the context of risk assessment of mixtures. Such information is generally scarce, and often complicated by the existence of multiple MOAs per compound. Here, MOAs related to developmental craniofacial malformations were derived from literature, and assembled in a MOA network. A selection of gene expression markers was based on these MOAs. Next, these markers were verified by qPCR in zebrafish embryos, after exposure to reference compounds. These were: triazoles for inhibition of retinoic acid (RA) metabolism, AM580 and CD3254 for selective activation of respectively RA-receptor (RAR) and retinoid-X-receptor (RXR), dithiocarbamates for inhibition of lysyl oxidase, TCDD for activation of the aryl-hydrocarbon-receptor (AhR), VPA for inhibition of histone deacetylase (HDAC), and PFOS for activation of peroxisome proliferator-activated receptor-alpha (PPARα). Next, marker gene profiles for these reference compounds were used to map the profiles of test compounds to known MOAs. In this way, 2,4-dinitrophenol matched with the TCDD and RAR profiles, boric acid with RAR, endosulfan with PFOS, fenpropimorph with dithiocarbamates, PCB126 with AhR, and RA with triazoles and RAR profiles. Prochloraz showed no match. Activities of these compounds in ToxCast assays, and in silico analysis of binding affinity to the respective targets showed limited concordance with the marker gene expression profiles, but still confirmed the complex MOA profiles of reference and test compounds. Ultimately, this approach could be used to support modeling of mixture effects based on upfront knowledge of (dis)similarity of MOAs
Mixture testing; Adverse outcome pathway; Developmental toxicity
Settore BIO/10 - Biochimica
set-2020
15-giu-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0890623820301556-main.pdf

Open Access dal 16/09/2021

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 3.56 MB
Formato Adobe PDF
3.56 MB Adobe PDF Visualizza/Apri
1-s2.0-S0890623820301556-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.6 MB
Formato Adobe PDF
2.6 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/741101
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact