Semiclassical spectroscopy is a practical way to get an accurately approximate quantum description of spectral features starting from ab initio molecular dynamics simulations. The computational bottleneck for the method is represented by the cost of ab initio potential, gradient, and Hessian matrix estimates. This drawback is particularly severe for biological systems due to their unique complexity and large dimensionality. The main goal of this manuscript is to demonstrate that quantum dynamics and spectroscopy, at the level of semiclassical approximation, are doable even for sizable biological systems. To this end, we investigate the possibility of performing semiclassical spectroscopy simulations when ab initio calculations are replaced by computationally cheaper force field evaluations. Both polarizable (AMOEBABIO18) and nonpolarizable (AMBER14SB) force fields are tested. Calculations of some particular vibrational frequencies of four nucleosides, i.e., uridine, thymidine, deoxyguanosine, and adenosine, show that ab initio simulations are accurate and widely applicable. Conversely, simulations based on AMBER14SB are limited to harmonic approximations, but those relying on AMOEBABIO18 yield acceptable semiclassical values if the investigated conformation has been included in the force field parametrization. The main conclusion is that AMOEBABIO18 may provide a viable route to assist semiclassical spectroscopy in the study of large biological molecules for which an ab initio approach is not computationally affordable.

Semiclassical Vibrational Spectroscopy of Biological Molecules Using Force Fields / F. Gabas, R. Conte, M. Ceotto. - In: JOURNAL OF CHEMICAL THEORY AND COMPUTATION. - ISSN 1549-9618. - 16:6(2020 Jun 09), pp. 3476-3485. [10.1021/acs.jctc.0c00127]

Semiclassical Vibrational Spectroscopy of Biological Molecules Using Force Fields

F. Gabas
Primo
;
R. Conte
Secondo
;
M. Ceotto
Ultimo
2020

Abstract

Semiclassical spectroscopy is a practical way to get an accurately approximate quantum description of spectral features starting from ab initio molecular dynamics simulations. The computational bottleneck for the method is represented by the cost of ab initio potential, gradient, and Hessian matrix estimates. This drawback is particularly severe for biological systems due to their unique complexity and large dimensionality. The main goal of this manuscript is to demonstrate that quantum dynamics and spectroscopy, at the level of semiclassical approximation, are doable even for sizable biological systems. To this end, we investigate the possibility of performing semiclassical spectroscopy simulations when ab initio calculations are replaced by computationally cheaper force field evaluations. Both polarizable (AMOEBABIO18) and nonpolarizable (AMBER14SB) force fields are tested. Calculations of some particular vibrational frequencies of four nucleosides, i.e., uridine, thymidine, deoxyguanosine, and adenosine, show that ab initio simulations are accurate and widely applicable. Conversely, simulations based on AMBER14SB are limited to harmonic approximations, but those relying on AMOEBABIO18 yield acceptable semiclassical values if the investigated conformation has been included in the force field parametrization. The main conclusion is that AMOEBABIO18 may provide a viable route to assist semiclassical spectroscopy in the study of large biological molecules for which an ab initio approach is not computationally affordable.
Settore CHIM/02 - Chimica Fisica
   Divide and Conquer ad initio semiclassical molecular dynamics for spectropic calculations of complex systems (SEMICOMPLEX)
   SEMICOMPLEX
   EUROPEAN COMMISSION
   H2020
   647107
9-giu-2020
mag-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
Ceotto_20_forcefields.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.25 MB
Formato Adobe PDF
2.25 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Draft_FF_RESUB3_CLEAN.pdf

Open Access dal 10/06/2021

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.35 MB
Formato Adobe PDF
1.35 MB Adobe PDF Visualizza/Apri
Draft_FF_RESUB_v3.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/739953
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 17
social impact