Voltage-gated sodium channels (NavChs) are biological pores that control the ow of sodium ions through the cell membrane. In humans, mutations in genes encoding NavChs can disrupt physiological cellular activity thus leading to a wide spectrum of diseases. Here, we present a topological connection between the functional architecture of a NavAb bacterial channel and accumulation of atomic hydropathicity around its pore. This connection is established via a scaling analysis methodology that elucidates how intrachannel hydropathic density variations translate into hydropathic dipole field configurations along the pore. Our findings suggest the existence of a non random cumulative hydropathic topology that is organized parallel to the membrane surface so that pore's stability, as well as, gating behavior are guaranteed. Given the biophysical significance of the hydropathic effect, our study seeks to provide a computational framework for studying cumulative hydropathic topological properties of NavChs and pore-forming proteins in general. This article is protected by copyright. All rights reserved.

Cumulative hydropathic topology of a voltage-gated sodium channel at atomic resolution / M.N. Xenakis, D. Kapetis, Y. Yang, J. Heijman, S.G. Waxman, G. Lauria, C.G. Faber, H.J.M. Smeets, R.L. Westra, P. Lindsey. - In: PROTEINS. - ISSN 0887-3585. - (2020). [Epub ahead of print]

Cumulative hydropathic topology of a voltage-gated sodium channel at atomic resolution

G. Lauria;
2020

Abstract

Voltage-gated sodium channels (NavChs) are biological pores that control the ow of sodium ions through the cell membrane. In humans, mutations in genes encoding NavChs can disrupt physiological cellular activity thus leading to a wide spectrum of diseases. Here, we present a topological connection between the functional architecture of a NavAb bacterial channel and accumulation of atomic hydropathicity around its pore. This connection is established via a scaling analysis methodology that elucidates how intrachannel hydropathic density variations translate into hydropathic dipole field configurations along the pore. Our findings suggest the existence of a non random cumulative hydropathic topology that is organized parallel to the membrane surface so that pore's stability, as well as, gating behavior are guaranteed. Given the biophysical significance of the hydropathic effect, our study seeks to provide a computational framework for studying cumulative hydropathic topological properties of NavChs and pore-forming proteins in general. This article is protected by copyright. All rights reserved.
NavAb; cumulative hydropathic effects; hydrophobic gating; scaling; topology; voltage-gated sodium channels
Settore MED/26 - Neurologia
2020
24-mag-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
prot.25951.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/737397
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact