Background and objective: Persistent hepatic progenitor cells (HPC) activation resulting in ductular reaction (DR) is responsible for pathologic liver repair in cholangiopathies. Also, HPC/DR expansion correlates with fibrosis in several chronic liver diseases, including steatohepatitis. Increasing evidence indicates Notch signaling as a key regulator of HPC/DR response in biliary and more in general liver injuries. Therefore, we aimed to investigate the role of Notch during HPC/DR activation in a mouse model of steatohepatitis. Methods: Steatohepatitis was generated using methionine-choline deficient (MCD) diet. For hepatocyte lineage tracing, R26R-YFP mice were infected with AAV8-TBG-Cre. Results: MCD diet promoted a strong HPC/DR response that progressively diffused in the lobule, and correlated with increased fibrosis and TGF-β1 expression. Notch signaling was unchanged in laser-capture microdissected HPC/DR, whereas Notch receptors were down regulated in hepatocytes. However, in-vivo lineage tracing experiments identified discrete hepatocytes showing Notch-1 activation and expressing (the Notch-dependent) Sox9. Stimulation of AML-12 hepatocyte-cell line with immobilized Jag1 induced Sox9 and down-regulated albumin and BSEP expression. TGF-β1 treatment in primary hepatic stellate cells (HSC) induced Jag1 expression. In MCD diet-fed mice, αSMA-positive HSC were localized around Sox9 expressing hepatocytes, suggesting that Notch activation in hepatocytes was promoted by TGF-β1 stimulated HSC. In-vivo Notch inhibition reduced HPC response and fibrosis progression. Conclusion: Our data suggest that Notch signaling is an important regulator of DR and that in steatohepatitis, hepatocytes exposed to Jag1-positive HSC, contribute to pathologic DR by undergoing Notch-mediated differentiation towards an HPC-like phenotype. Given the roles of Notch in fibrosis and liver cancer, these data suggest mesenchymal expression of Jag1 as an alternative therapeutic target.

Notch signaling and progenitor/ductular reaction in steatohepatitis / C.M. Morell, R. Fiorotto, M. Meroni, A. Raizner, B. Torsello, M. Cadamuro, G. Spagnuolo, E. Kaffe, S. Sutti, E. Albano, M. Strazzabosco. - In: PLOS ONE. - ISSN 1932-6203. - 12:11(2017 Nov 15), pp. e0187384.1-e0187384.21. [10.1371/journal.pone.0187384]

Notch signaling and progenitor/ductular reaction in steatohepatitis

M. Meroni;G. Spagnuolo;
2017

Abstract

Background and objective: Persistent hepatic progenitor cells (HPC) activation resulting in ductular reaction (DR) is responsible for pathologic liver repair in cholangiopathies. Also, HPC/DR expansion correlates with fibrosis in several chronic liver diseases, including steatohepatitis. Increasing evidence indicates Notch signaling as a key regulator of HPC/DR response in biliary and more in general liver injuries. Therefore, we aimed to investigate the role of Notch during HPC/DR activation in a mouse model of steatohepatitis. Methods: Steatohepatitis was generated using methionine-choline deficient (MCD) diet. For hepatocyte lineage tracing, R26R-YFP mice were infected with AAV8-TBG-Cre. Results: MCD diet promoted a strong HPC/DR response that progressively diffused in the lobule, and correlated with increased fibrosis and TGF-β1 expression. Notch signaling was unchanged in laser-capture microdissected HPC/DR, whereas Notch receptors were down regulated in hepatocytes. However, in-vivo lineage tracing experiments identified discrete hepatocytes showing Notch-1 activation and expressing (the Notch-dependent) Sox9. Stimulation of AML-12 hepatocyte-cell line with immobilized Jag1 induced Sox9 and down-regulated albumin and BSEP expression. TGF-β1 treatment in primary hepatic stellate cells (HSC) induced Jag1 expression. In MCD diet-fed mice, αSMA-positive HSC were localized around Sox9 expressing hepatocytes, suggesting that Notch activation in hepatocytes was promoted by TGF-β1 stimulated HSC. In-vivo Notch inhibition reduced HPC response and fibrosis progression. Conclusion: Our data suggest that Notch signaling is an important regulator of DR and that in steatohepatitis, hepatocytes exposed to Jag1-positive HSC, contribute to pathologic DR by undergoing Notch-mediated differentiation towards an HPC-like phenotype. Given the roles of Notch in fibrosis and liver cancer, these data suggest mesenchymal expression of Jag1 as an alternative therapeutic target.
Animals; Diet; Fatty Liver; Hepatocytes; Male; Mice; Mice, Inbred C57BL; Receptors, Notch; Stem Cells; Signal Transduction
Settore MED/09 - Medicina Interna
15-nov-2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
journal.pone.0187384.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 22.69 MB
Formato Adobe PDF
22.69 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/736053
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 21
social impact