We prove interior H2s-ε regularity for weak solutions of linear elliptic integro-differential equations close to the fractional s-Laplacian. The result is obtained via intermediate estimates in Nikol’skii spaces, which are in turn carried out by means of an appropriate modification of the classical translation method by Nirenberg.

Interior regularity of solutions of non-local equations in Sobolev and Nikol’skii spaces / M. Cozzi. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 196:2(2017 Apr), pp. 555-578. [10.1007/s10231-016-0586-3]

Interior regularity of solutions of non-local equations in Sobolev and Nikol’skii spaces

M. Cozzi
2017

Abstract

We prove interior H2s-ε regularity for weak solutions of linear elliptic integro-differential equations close to the fractional s-Laplacian. The result is obtained via intermediate estimates in Nikol’skii spaces, which are in turn carried out by means of an appropriate modification of the classical translation method by Nirenberg.
Non-local equations; Fractional Laplacian; Regularity theory; Translation method; Fractional Sobolev spaces; Nikol'skii spaces
Settore MAT/05 - Analisi Matematica
Settore MATH-03/A - Analisi matematica
apr-2017
12-lug-2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
1601.02819v1.pdf

accesso aperto

Descrizione: licenza: https://arxiv.org/licenses/nonexclusive-distrib/1.0/license.html
Tipologia: Pre-print (manoscritto inviato all'editore)
Licenza: Altro
Dimensione 289.58 kB
Formato Adobe PDF
289.58 kB Adobe PDF Visualizza/Apri
s10231-016-0586-3.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Licenza: Nessuna licenza
Dimensione 583.81 kB
Formato Adobe PDF
583.81 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/734196
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 43
  • OpenAlex ND
social impact