Myotonic dystrophy type 2 (DM2) is an autosomal dominant multisystemic disorder caused by a CCTG expansion in intron 1 of the zinc finger protein 9 gene on chromosome 3. Mutant transcripts are retained in muscle nuclei producing ribonuclear inclusions, which can bind specific RNA-binding proteins leading to a reduction in their activity. The nuclear sequestration of muscleblind-like proteins appears to be involved in splicing defects of genes directly related to the myotonic dystrophy phenotypes. Experimental evidence suggests that ribonuclear inclusions and muscleblind-like protein 1 (MBNL1) sequestration are strongly involved in DM2 pathogenesis. By using fluorescence in situ hybridization in combination with MBNL1-immunofluorescence, we have observed the presence of ribonuclear inclusions and MBNL1 nuclear sequestration at different time points of in vitro myoblast differentiation in each DM2 patient examined. Immunofluorescence and Western blot analysis of several markers of skeletal muscle differentiation reveal that the degree of differentiation of DM2 myoblasts is comparable to that observed in controls. Nevertheless the splicing pattern of the insulin receptor and MBNL1 transcripts, directly related to the DM2 phenotype, appears to be altered in in vitro differentiated DM2 myotubes. Our data seem indicate that the presence of ribonuclear inclusions and MBNL1 nuclear foci are involved in alteration of alternative splicing but do not impair DM2 myogenic differentiation.

Ribonuclear inclusions and MBNL1 nuclear sequestration do not affect myoblast differentiation but alter gene splicing in myotonic dystrophy type 2 / R. Cardani, S. Baldassa, A. Botta, F. Rinaldi, G. Novelli, E. Mancinelli, G. Meola. - In: NEUROMUSCULAR DISORDERS. - ISSN 0960-8966. - 19:5(2009), pp. 335-343. [10.1016/j.nmd.2009.03.002]

Ribonuclear inclusions and MBNL1 nuclear sequestration do not affect myoblast differentiation but alter gene splicing in myotonic dystrophy type 2

R. Cardani;S. Baldassa;E. Mancinelli;G. Meola
2009

Abstract

Myotonic dystrophy type 2 (DM2) is an autosomal dominant multisystemic disorder caused by a CCTG expansion in intron 1 of the zinc finger protein 9 gene on chromosome 3. Mutant transcripts are retained in muscle nuclei producing ribonuclear inclusions, which can bind specific RNA-binding proteins leading to a reduction in their activity. The nuclear sequestration of muscleblind-like proteins appears to be involved in splicing defects of genes directly related to the myotonic dystrophy phenotypes. Experimental evidence suggests that ribonuclear inclusions and muscleblind-like protein 1 (MBNL1) sequestration are strongly involved in DM2 pathogenesis. By using fluorescence in situ hybridization in combination with MBNL1-immunofluorescence, we have observed the presence of ribonuclear inclusions and MBNL1 nuclear sequestration at different time points of in vitro myoblast differentiation in each DM2 patient examined. Immunofluorescence and Western blot analysis of several markers of skeletal muscle differentiation reveal that the degree of differentiation of DM2 myoblasts is comparable to that observed in controls. Nevertheless the splicing pattern of the insulin receptor and MBNL1 transcripts, directly related to the DM2 phenotype, appears to be altered in in vitro differentiated DM2 myotubes. Our data seem indicate that the presence of ribonuclear inclusions and MBNL1 nuclear foci are involved in alteration of alternative splicing but do not impair DM2 myogenic differentiation.
Myotonic dystrophy type 2 ; MBNL1 ; Ribonuclear inclusions ; In vitro myoblasts differentiation ; Alternative splicing
Settore MED/26 - Neurologia
Settore BIO/09 - Fisiologia
2009
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/73275
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 22
social impact