We report on the measurement of lifetimes of excited states in the near-mid-shell nuclei Dy164,166 using the gamma-ray coincidence fast-timing method. The nuclei of interest were populated using reactions between an O18 beam and a gold-backed isotopically enriched Dy164 target of thickness 6.3mg/cm2 at primary beam energies of 71, 76, and 80 MeV from the IPN-Orsay laboratory, France. Excited states were populated in Dy164, Dy166, and W178,179 following Coulomb excitation, inelastic nuclear scattering, two-neutron transfer, and fusion-evaporation reaction channels respectively. Gamma rays from excited states were measured using the ν-Ball high-purity germanium (HPGe)-LaBr3 hybrid γ-ray spectrometer with the excited state lifetimes extracted using the fast-timing coincidence method using HPGe-gated LaBr3-LaBr3 triple coincident events. The lifetime of the first Iπ=2+ excited state in Dy166 was used to determine the transition quadrupole deformation of this neutron-rich nucleus for the first time. The experimental methodology was validated by showing consistency with previously determined excited state lifetimes in Dy164. The half-lives of the yrast 2+ states in Dy164 and Dy166 were 2.35(6) and 2.3(2) ns, respectively, corresponding to transition quadrupole moment values of Q0=7.58(9) and 7.5(4) eb, respectively. The lifetime of the yrast 2+ state in Dy166 is consistent with a quenching of nuclear quadrupole deformation at β≈0.35 as the N=104 mid-shell is approached.

Half-life measurements in Dy 164,166 using γ-γ fast-timing spectroscopy with the ν -Ball spectrometer / R.L. Canavan, M. Rudigier, P.H. Regan, M. Lebois, J.N. Wilson, N. Jovancevic, P.-. Soderstrom, S.M. Collins, D. Thisse, J. Benito, S. Bottoni, M. Brunet, N. Cieplicka-Orynczak, S. Courtin, D.T. Doherty, L.M. Fraile, K. Hadynska-Klek, G. Hafner, M. Heine, L.W. Iskra, V. Karayonchev, A. Kennington, P. Koseoglou, G. Lotay, G. Lorusso, M. Nakhostin, C.R. Nita, S. Oberstedt, Z. Podolyak, L. Qi, J.-. Regis, V. Sanchez-Tembleque, R. Shearman, V. Vedia, W. Witt. - In: PHYSICAL REVIEW C. - ISSN 2469-9985. - 101:2(2020 Feb), pp. 024313.1-024313.10.

Half-life measurements in Dy 164,166 using γ-γ fast-timing spectroscopy with the ν -Ball spectrometer

S. Bottoni;
2020

Abstract

We report on the measurement of lifetimes of excited states in the near-mid-shell nuclei Dy164,166 using the gamma-ray coincidence fast-timing method. The nuclei of interest were populated using reactions between an O18 beam and a gold-backed isotopically enriched Dy164 target of thickness 6.3mg/cm2 at primary beam energies of 71, 76, and 80 MeV from the IPN-Orsay laboratory, France. Excited states were populated in Dy164, Dy166, and W178,179 following Coulomb excitation, inelastic nuclear scattering, two-neutron transfer, and fusion-evaporation reaction channels respectively. Gamma rays from excited states were measured using the ν-Ball high-purity germanium (HPGe)-LaBr3 hybrid γ-ray spectrometer with the excited state lifetimes extracted using the fast-timing coincidence method using HPGe-gated LaBr3-LaBr3 triple coincident events. The lifetime of the first Iπ=2+ excited state in Dy166 was used to determine the transition quadrupole deformation of this neutron-rich nucleus for the first time. The experimental methodology was validated by showing consistency with previously determined excited state lifetimes in Dy164. The half-lives of the yrast 2+ states in Dy164 and Dy166 were 2.35(6) and 2.3(2) ns, respectively, corresponding to transition quadrupole moment values of Q0=7.58(9) and 7.5(4) eb, respectively. The lifetime of the yrast 2+ state in Dy166 is consistent with a quenching of nuclear quadrupole deformation at β≈0.35 as the N=104 mid-shell is approached.
Settore FIS/04 - Fisica Nucleare e Subnucleare
feb-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
PhysRevC.101.024313.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/732412
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact