We address nearly pure quantum statistical models, i.e. situations where the information about a parameter is encoded in pure states weakly perturbed by the mixing with a parameter independent state, mimicking a weak source of noise. We show that the symmetric logarithmic derivative is left unchanged, and find an approximate analytic expression for the quantum Fisher information (QFI) which provides bounds on how much a weak source of noise may degrade the QFI.
About the quantum Fisher information of nearly pure quantum statistical models / M.G.A. Paris. - In: INTERNATIONAL JOURNAL OF QUANTUM INFORMATION. - ISSN 0219-7499. - 18:1(2020 Feb), pp. 1941022.1-1941022.4.
About the quantum Fisher information of nearly pure quantum statistical models
M.G.A. Paris
2020
Abstract
We address nearly pure quantum statistical models, i.e. situations where the information about a parameter is encoded in pure states weakly perturbed by the mixing with a parameter independent state, mimicking a weak source of noise. We show that the symmetric logarithmic derivative is left unchanged, and find an approximate analytic expression for the quantum Fisher information (QFI) which provides bounds on how much a weak source of noise may degrade the QFI.File | Dimensione | Formato | |
---|---|---|---|
S0219749919410223.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
226.83 kB
Formato
Adobe PDF
|
226.83 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.