Background: Pirin (PIR) is a highly conserved nuclear protein originally isolated as an interactor of NFI/CTF1 transcription/replication factor. It is a member of the functionally diverse cupin superfamily and its activity has been linked to different biological and molecular processes, such as regulation of transcription, apoptosis, stress response and enzymatic processes. Although its precise role in these functions has not yet been defined, PIR expression is known to be deregulated in several human malignancies.Results: We performed immunohistochemical analysis of PIR expression in primary samples from normal human tissues and tumors and identified a dislocation of PIR to the cytoplasm in a subset of melanomas, and a positive correlation between cytoplasmic PIR levels and melanoma progression. PIR localization was subsequently analyzed in vitro in melanoma cell lines through a high content immunofluorescence based approach (ImmunoCell-Array).Conclusions: The high consistency between in vivo and in vitro results obtained by immunohistochemistry and ImmunoCell-Array provides a validation of the potential of ImmunoCell-Array technology for the rapid screening of putative biological markers, and suggests that cytoplasmic localization of PIR may represent a characteristic of melanoma progression.

Pirin delocalization in melanoma progression identified by high content immuno-detection based approaches / S. Licciulli, C. Luise, A. Zanardi, L. Giorgetti, G. Viale, L. Lanfrancone, R. Carbone, M. Alcalay. - In: BMC CELL BIOLOGY. - ISSN 1471-2121. - 11:11(2010), p. 5.5.

Pirin delocalization in melanoma progression identified by high content immuno-detection based approaches

G. Viale;M. Alcalay
2010

Abstract

Background: Pirin (PIR) is a highly conserved nuclear protein originally isolated as an interactor of NFI/CTF1 transcription/replication factor. It is a member of the functionally diverse cupin superfamily and its activity has been linked to different biological and molecular processes, such as regulation of transcription, apoptosis, stress response and enzymatic processes. Although its precise role in these functions has not yet been defined, PIR expression is known to be deregulated in several human malignancies.Results: We performed immunohistochemical analysis of PIR expression in primary samples from normal human tissues and tumors and identified a dislocation of PIR to the cytoplasm in a subset of melanomas, and a positive correlation between cytoplasmic PIR levels and melanoma progression. PIR localization was subsequently analyzed in vitro in melanoma cell lines through a high content immunofluorescence based approach (ImmunoCell-Array).Conclusions: The high consistency between in vivo and in vitro results obtained by immunohistochemistry and ImmunoCell-Array provides a validation of the potential of ImmunoCell-Array technology for the rapid screening of putative biological markers, and suggests that cytoplasmic localization of PIR may represent a characteristic of melanoma progression.
Settore MED/08 - Anatomia Patologica
2010
Article (author)
File in questo prodotto:
File Dimensione Formato  
1471-2121-11-5.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.34 MB
Formato Adobe PDF
1.34 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/73105
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 22
social impact