In the present work, the isovector dipole responses, both in the resonance region and in the low-energy sector, are investigated using the microscopic nuclear Energy Density Functionals (EDFs). The self-consistent QRPA model based on Skyrme Hartree Fock BCS approach is applied to study the evolution of the isovector dipole strength by increasing neutron number and temperature. First, the isovector dipole strength and excitation energies are investigated for the Ni isotopic chain at zero temperature. The evolution of the low-energy dipole strength is studied as a function of the neutron number. In the second part, the temperature dependence of the isovector dipole excitations is studied using the self-consistent finite temperature QRPA, below and above the critical temperatures. It is shown that new excited states become possible due to the thermally occupied states above the Fermi level, and opening of the new excitations channels. In addition, temperature leads to fragmentation of the low-energy strength around the neutron separation energies, and between 9 and 12 MeV. We find that the cumulative sum of the strength below E≤ 12 MeV decreases in open-shell nuclei due to the vanishing of the pairing correlations as temperature increases up to T= 1 MeV. The analysis of the transition densities in the low-energy region shows that the proton and neutron transition densities display a mixed pattern: both isoscalar and isovector motion of protons and neutrons are obtained inside nuclei, while the neutron transition density is dominant at the surface region.

Nuclear excitations within microscopic EDF approaches : pairing and temperature effects on the dipole response / E. Yuksel, G. Colo, E. Khan, Y.F. Niu. - In: THE EUROPEAN PHYSICAL JOURNAL. A, HADRONS AND NUCLEI. - ISSN 1434-6001. - 55:12(2019 Dec), pp. 230.1-230.10. [10.1140/epja/i2019-12918-8]

Nuclear excitations within microscopic EDF approaches : pairing and temperature effects on the dipole response

G. Colo;
2019

Abstract

In the present work, the isovector dipole responses, both in the resonance region and in the low-energy sector, are investigated using the microscopic nuclear Energy Density Functionals (EDFs). The self-consistent QRPA model based on Skyrme Hartree Fock BCS approach is applied to study the evolution of the isovector dipole strength by increasing neutron number and temperature. First, the isovector dipole strength and excitation energies are investigated for the Ni isotopic chain at zero temperature. The evolution of the low-energy dipole strength is studied as a function of the neutron number. In the second part, the temperature dependence of the isovector dipole excitations is studied using the self-consistent finite temperature QRPA, below and above the critical temperatures. It is shown that new excited states become possible due to the thermally occupied states above the Fermi level, and opening of the new excitations channels. In addition, temperature leads to fragmentation of the low-energy strength around the neutron separation energies, and between 9 and 12 MeV. We find that the cumulative sum of the strength below E≤ 12 MeV decreases in open-shell nuclei due to the vanishing of the pairing correlations as temperature increases up to T= 1 MeV. The analysis of the transition densities in the low-energy region shows that the proton and neutron transition densities display a mixed pattern: both isoscalar and isovector motion of protons and neutrons are obtained inside nuclei, while the neutron transition density is dominant at the surface region.
Settore FIS/04 - Fisica Nucleare e Subnucleare
   European Nuclear Science and Application Research 2
   ENSAR2
   EUROPEAN COMMISSION
   H2020
   654002
dic-2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
template.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 1.92 MB
Formato Adobe PDF
1.92 MB Adobe PDF Visualizza/Apri
Yüksel2019_Article_NuclearExcitationsWithinMicros.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 882.54 kB
Formato Adobe PDF
882.54 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/729898
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact