An investigation of geological conditions is always a key point for planning infrastructure constructions. Bedrock surface and rock quality must be estimated carefully in the designing process of infrastructures. A large direct-current resistivity and time-domain induced-polarization survey has been performed in Dalby, Lund Municipality, southern Sweden, with the aim of mapping lithological variations in bedrock. The geology at the site is characterised by Precambrian granitic gneisses and amphibolites, which are intensely deformed, fractured, and partly weathered. In addition, there are northwest-trending Permian dolerite dykes that are less deformed. Four 2D direct-current resistivity and time-domain induced-polarization profiles of about 1-km length have been carefully pre-processed to retrieve time-domain induced polarization responses and inverted to obtain the direct-current resistivity distribution of the subsoil and the phase of the complex conductivity using a constant-phase angle model. The joint interpretation of electrical resistivity and induced-polarization models leads to a better understanding of complex three-dimensional subsoil geometries. The results have been validated by lithological descriptions from several drillings. In addition, direct-current resistivity and time-domain induced-polarization logging has been carried out in two different boreholes, showing a good match with the results of the surface direct-current resistivity and time-domain induced-polarization profiles. The direct-current resistivity and time-domain induced-polarization methodology proved to be a suitable technique for extensively mapping weathered zones with poor geotechnical characteristics and tectonic structures, which can lead to severe problems for infrastructure construction and/or constitute risk zones for aquifer contamination.

Mapping geological structures in bedrock via large-scale direct current resistivity and time-domain induced polarization tomography / M. Rossi, P. Olsson, S. Johanson, G. Fiandaca, D. Bergdahl, T. Dahlin. - In: NEAR SURFACE GEOPHYSICS. - ISSN 1569-4445. - 15:6(2017), pp. 657-667. [10.3997/1873-0604.2017058]

Mapping geological structures in bedrock via large-scale direct current resistivity and time-domain induced polarization tomography

G. Fiandaca;
2017

Abstract

An investigation of geological conditions is always a key point for planning infrastructure constructions. Bedrock surface and rock quality must be estimated carefully in the designing process of infrastructures. A large direct-current resistivity and time-domain induced-polarization survey has been performed in Dalby, Lund Municipality, southern Sweden, with the aim of mapping lithological variations in bedrock. The geology at the site is characterised by Precambrian granitic gneisses and amphibolites, which are intensely deformed, fractured, and partly weathered. In addition, there are northwest-trending Permian dolerite dykes that are less deformed. Four 2D direct-current resistivity and time-domain induced-polarization profiles of about 1-km length have been carefully pre-processed to retrieve time-domain induced polarization responses and inverted to obtain the direct-current resistivity distribution of the subsoil and the phase of the complex conductivity using a constant-phase angle model. The joint interpretation of electrical resistivity and induced-polarization models leads to a better understanding of complex three-dimensional subsoil geometries. The results have been validated by lithological descriptions from several drillings. In addition, direct-current resistivity and time-domain induced-polarization logging has been carried out in two different boreholes, showing a good match with the results of the surface direct-current resistivity and time-domain induced-polarization profiles. The direct-current resistivity and time-domain induced-polarization methodology proved to be a suitable technique for extensively mapping weathered zones with poor geotechnical characteristics and tectonic structures, which can lead to severe problems for infrastructure construction and/or constitute risk zones for aquifer contamination.
spectral induced polarization; DC resistivity; Sweden; tunnel; model; IP; Norway; zones; sands
Settore GEO/11 - Geofisica Applicata
2017
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/725631
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
  • OpenAlex ND
social impact