We study the tangential Cauchy-Riemann equations ∂̄bu = ω for (0,q)-forms on quadratic CR manifolds. We discuss solvability for data ω in the Schwartz class and describe the range of the tangential Cauchy-Riemann operator in terms of the signatures of the scalar components of the Levi form.

Tangential Cauchy-Riemann equations on quadratic CR manifolds / M.M. Peloso, F. Ricci. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI. - ISSN 1720-0776. - 13:3-4(2002), pp. 285-294.

Tangential Cauchy-Riemann equations on quadratic CR manifolds

M.M. Peloso
;
2002

Abstract

We study the tangential Cauchy-Riemann equations ∂̄bu = ω for (0,q)-forms on quadratic CR manifolds. We discuss solvability for data ω in the Schwartz class and describe the range of the tangential Cauchy-Riemann operator in terms of the signatures of the scalar components of the Levi form.
Tangential Cauchy-Riemann complex; Kohn Laplacian; CR manifolds; Global solvability; Hypoellipticity
Settore MAT/05 - Analisi Matematica
2002
Article (author)
File in questo prodotto:
File Dimensione Formato  
RLIN_2002_9_13_3-4_285_0.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 397.09 kB
Formato Adobe PDF
397.09 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/725199
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact