The small muscle protein, X-linked (SMPX) gene encodes a cytoskeleton-associated protein, highly expressed in both cardiac and skeletal muscles, as well as in fetal inner ears, with suggested roles as mechanotransductor. Recently, several mutations in the SMPX gene have been associated with X-chromosomal progressive deafness in human. However, very little information is known concerning the roles of SMPX, and no in-vivo models are currently available. Therefore, we characterized the zebrafish ortholog of SMPX to pave the way towards the establishment of a biotool for future functional studies. Despite the genome duplication occurred in the ancestry of teleosts, zebrafish retain only one copy of smpx which shares a high degree of similarity with the mammalian counterpart in terms of genomic organization, syntenic map, and encoded protein. RT-PCR, as well as whole-mount in-situ hybridization and immunohistochemistry analyses, revealed that smpx is expressed in several embryonic areas starting from the 4-somite stage. Specifically, smpx mRNA marked the Kupffer's vesicle (KV), the somites, the myocardium, the hair cells of the anterior and the posterior macula of the inner ear, the pronephric ducts, and the muscles of the branchial arches, eyes and pectoral fins. According to our data, zebrafish smpx expression pattern closely resembles that observed in mouse and human, supporting the notion that zebrafish might represent a suitable in-vivo model to disclose the cellular and molecular mechanisms underlying the involvement of SMPX in development and disease.

Expression pattern of the small muscle protein, X-linked (smpx) gene during zebrafish embryonic and larval developmental stages / A. Ghilardi, A. Diana, L. Prosperi, L.P.C. Del Giacco. - In: GENE EXPRESSION PATTERNS. - ISSN 1567-133X. - 36:(2020 Jun). [10.1016/j.gep.2020.119110]

Expression pattern of the small muscle protein, X-linked (smpx) gene during zebrafish embryonic and larval developmental stages

A. Ghilardi
Primo
;
A. Diana
Secondo
;
L.P.C. DEL GIACCO
Ultimo
2020

Abstract

The small muscle protein, X-linked (SMPX) gene encodes a cytoskeleton-associated protein, highly expressed in both cardiac and skeletal muscles, as well as in fetal inner ears, with suggested roles as mechanotransductor. Recently, several mutations in the SMPX gene have been associated with X-chromosomal progressive deafness in human. However, very little information is known concerning the roles of SMPX, and no in-vivo models are currently available. Therefore, we characterized the zebrafish ortholog of SMPX to pave the way towards the establishment of a biotool for future functional studies. Despite the genome duplication occurred in the ancestry of teleosts, zebrafish retain only one copy of smpx which shares a high degree of similarity with the mammalian counterpart in terms of genomic organization, syntenic map, and encoded protein. RT-PCR, as well as whole-mount in-situ hybridization and immunohistochemistry analyses, revealed that smpx is expressed in several embryonic areas starting from the 4-somite stage. Specifically, smpx mRNA marked the Kupffer's vesicle (KV), the somites, the myocardium, the hair cells of the anterior and the posterior macula of the inner ear, the pronephric ducts, and the muscles of the branchial arches, eyes and pectoral fins. According to our data, zebrafish smpx expression pattern closely resembles that observed in mouse and human, supporting the notion that zebrafish might represent a suitable in-vivo model to disclose the cellular and molecular mechanisms underlying the involvement of SMPX in development and disease.
Settore BIO/06 - Anatomia Comparata e Citologia
Settore BIO/17 - Istologia
giu-2020
19-mar-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1567133X20300120-main_compressed.pdf

Open Access dal 02/06/2021

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 404.12 kB
Formato Adobe PDF
404.12 kB Adobe PDF Visualizza/Apri
1-s2.0-S1567133X20300120-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.15 MB
Formato Adobe PDF
2.15 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/721486
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact