Aiming at enlarging the class of symmetries of an SDE, we introduce a family of stochastic transformations able to change also the underlying probability measure exploiting Girsanov Theorem and we provide new determining equations for the infinitesimal symmetries of the SDE. The well-defined subset of the previous class of measure transformations given by Doob transformations allows us to recover all the Lie point symmetries of the Kolmogorov equation associated with the SDE. This gives the first stochastic interpretation of all the deterministic symmetries of the Kolmogorov equation. The general theory is applied to some relevant stochastic models.
Symmetries of stochastic differential equations using Girsanov transformations / F.C. De Vecchi, P. Morando, S. Ugolini. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - 53:13(2020 Apr 03). [10.1088/1751-8121/ab757d]
Symmetries of stochastic differential equations using Girsanov transformations
P. MorandoPenultimo
;S. UgoliniUltimo
2020
Abstract
Aiming at enlarging the class of symmetries of an SDE, we introduce a family of stochastic transformations able to change also the underlying probability measure exploiting Girsanov Theorem and we provide new determining equations for the infinitesimal symmetries of the SDE. The well-defined subset of the previous class of measure transformations given by Doob transformations allows us to recover all the Lie point symmetries of the Kolmogorov equation associated with the SDE. This gives the first stochastic interpretation of all the deterministic symmetries of the Kolmogorov equation. The general theory is applied to some relevant stochastic models.File | Dimensione | Formato | |
---|---|---|---|
DoobTransformations.pdf
accesso aperto
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
361.77 kB
Formato
Adobe PDF
|
361.77 kB | Adobe PDF | Visualizza/Apri |
De_Vecchi_2020_J._Phys._A%3A_Math._Theor._53_135204.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
2.04 MB
Formato
Adobe PDF
|
2.04 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.