Aiming at enlarging the class of symmetries of an SDE, we introduce a family of stochastic transformations able to change also the underlying probability measure exploiting Girsanov Theorem and we provide new determining equations for the infinitesimal symmetries of the SDE. The well-defined subset of the previous class of measure transformations given by Doob transformations allows us to recover all the Lie point symmetries of the Kolmogorov equation associated with the SDE. This gives the first stochastic interpretation of all the deterministic symmetries of the Kolmogorov equation. The general theory is applied to some relevant stochastic models.

Symmetries of stochastic differential equations using Girsanov transformations / F.C. De Vecchi, P. Morando, S. Ugolini. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - 53:13(2020 Apr 03). [10.1088/1751-8121/ab757d]

Symmetries of stochastic differential equations using Girsanov transformations

P. Morando
Penultimo
;
S. Ugolini
Ultimo
2020

Abstract

Aiming at enlarging the class of symmetries of an SDE, we introduce a family of stochastic transformations able to change also the underlying probability measure exploiting Girsanov Theorem and we provide new determining equations for the infinitesimal symmetries of the SDE. The well-defined subset of the previous class of measure transformations given by Doob transformations allows us to recover all the Lie point symmetries of the Kolmogorov equation associated with the SDE. This gives the first stochastic interpretation of all the deterministic symmetries of the Kolmogorov equation. The general theory is applied to some relevant stochastic models.
stochastic differential equations; Kolmogorov equation; Girsanov transformations; Doob h-transforms; lie symmetry analysis;
Settore MAT/06 - Probabilita' e Statistica Matematica
Settore MAT/07 - Fisica Matematica
3-apr-2020
12-feb-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
DoobTransformations.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 361.77 kB
Formato Adobe PDF
361.77 kB Adobe PDF Visualizza/Apri
De_Vecchi_2020_J._Phys._A%3A_Math._Theor._53_135204.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.04 MB
Formato Adobe PDF
2.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/720909
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 8
social impact