Recent evidence showed that neurotransmitters are synthesised in glial cells, such as the Schwann cells, which form myelin sheaths in the PNS. While the presence of GABA type A (GABA-A) receptors has been previously demonstrated in these cells, the evidence of GABA synthesis remained still elusive. In an attempt to demonstrate the presence of GABA in rat Schwann cells, we adopted a strategy, using several integrated neurochemical, molecular as well as immunocytochemical approaches. We first demonstrated the presence of glutamic acid decarboxylase of 67 kDa (GAD67) in Schwann cells, a crucial enzyme of the GABA synthesis mechanism. Second, we demonstrated that GABA is synthesized and localized in Schwann cells. As the third step we showed that allopregnanolone (10 nM), a potent allosteric modulator of GABA-A receptors, stimulates GABA synthesis through increased levels of GAD67 in Schwann cells. Analysis of intracellular signalling mechanisms revealed that the protein kinase A pathway, through enhanced cAMP levels and cAMP response element binding protein phosphorylation, modulates the allosteric action of allopregnanolone at the GABA-A receptor in Schwann cells. Our findings are the first to demonstrate that this GABA mechanism is active in Schwann cells thus establishing new potential therapeutic targets to control Schwann cell biology, which may prove useful in the treatment of several neurodegenerative disorders.
GABA synthesis in Schwann cells is induced by the neuroactive steroid allopregnanolone / V. Magnaghi, A. Parducz, A. Frasca, M. Ballabio, P. Procacci, G. Racagni, G. Bonanno, F. Fumagalli. - In: JOURNAL OF NEUROCHEMISTRY. - ISSN 0022-3042. - 112:4(2010 Feb), pp. 980-990.
GABA synthesis in Schwann cells is induced by the neuroactive steroid allopregnanolone
V. MagnaghiPrimo
;A. Frasca;M. Ballabio;P. Procacci;G. Racagni;F. FumagalliUltimo
2010
Abstract
Recent evidence showed that neurotransmitters are synthesised in glial cells, such as the Schwann cells, which form myelin sheaths in the PNS. While the presence of GABA type A (GABA-A) receptors has been previously demonstrated in these cells, the evidence of GABA synthesis remained still elusive. In an attempt to demonstrate the presence of GABA in rat Schwann cells, we adopted a strategy, using several integrated neurochemical, molecular as well as immunocytochemical approaches. We first demonstrated the presence of glutamic acid decarboxylase of 67 kDa (GAD67) in Schwann cells, a crucial enzyme of the GABA synthesis mechanism. Second, we demonstrated that GABA is synthesized and localized in Schwann cells. As the third step we showed that allopregnanolone (10 nM), a potent allosteric modulator of GABA-A receptors, stimulates GABA synthesis through increased levels of GAD67 in Schwann cells. Analysis of intracellular signalling mechanisms revealed that the protein kinase A pathway, through enhanced cAMP levels and cAMP response element binding protein phosphorylation, modulates the allosteric action of allopregnanolone at the GABA-A receptor in Schwann cells. Our findings are the first to demonstrate that this GABA mechanism is active in Schwann cells thus establishing new potential therapeutic targets to control Schwann cell biology, which may prove useful in the treatment of several neurodegenerative disorders.File | Dimensione | Formato | |
---|---|---|---|
11ae9e2173d07abb95971aae55c5a64989c97a16c9487777d1faf528de064a7e.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
603.55 kB
Formato
Adobe PDF
|
603.55 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.