The relaxation dynamics and the vibrational spectra of amorphous solids, such as metal alloys, have been intensely investigated as well separated topics in the past. The aim of this review is to summarize recent results in both these areas in an attempt to establish, or unveil, deeper connections between the two phenomena of relaxation and vibration. Theoretical progress in the area of slow relaxation dynamics of liquid and glassy systems and in the area of vibrational spectra of glasses and liquids is reviewed. After laying down a generic modelling framework to connect vibration and relaxation, the physics of metal alloys is considered where the emergence of power-law exponents has been identified both in the vibrational density of states (VDOS) as well as in density correlations. Also, theoretical frameworks which connect the VDOS to the relaxation behaviour and mechanical viscoelastic response in metallic glasses are reviewed. The same generic interpretative framework is then applied to the case of molecular glass formers where the emergence of stretched-exponential relaxation in dielectric relaxation can be put in quantitative relation with the VDOS by means of memory-function approaches. Further connections between relaxation and vibration are provided by the study of phonon linewidths in liquids and glasses, where a natural starting point is given by hydrodynamic theories. Finally, an agenda of outstanding issues including the appearance of compressed exponential relaxation in the intermediate scattering function of experimental and simulated systems (metal alloys, colloidal gels, jammed packings) is presented in light of available (or yet to be developed) mathematical models, and compared to non-exponential behaviour measured with macroscopic means such as mechanical spectroscopy/rheology.
Relaxation and vibrational properties in metal alloys and other disordered systems / A. Zaccone. - In: JOURNAL OF PHYSICS. CONDENSED MATTER. - ISSN 0953-8984. - 32:20(2020), pp. 203001.1-203001.25. [10.1088/1361-648X/ab6e41]
Relaxation and vibrational properties in metal alloys and other disordered systems
A. Zaccone
2020
Abstract
The relaxation dynamics and the vibrational spectra of amorphous solids, such as metal alloys, have been intensely investigated as well separated topics in the past. The aim of this review is to summarize recent results in both these areas in an attempt to establish, or unveil, deeper connections between the two phenomena of relaxation and vibration. Theoretical progress in the area of slow relaxation dynamics of liquid and glassy systems and in the area of vibrational spectra of glasses and liquids is reviewed. After laying down a generic modelling framework to connect vibration and relaxation, the physics of metal alloys is considered where the emergence of power-law exponents has been identified both in the vibrational density of states (VDOS) as well as in density correlations. Also, theoretical frameworks which connect the VDOS to the relaxation behaviour and mechanical viscoelastic response in metallic glasses are reviewed. The same generic interpretative framework is then applied to the case of molecular glass formers where the emergence of stretched-exponential relaxation in dielectric relaxation can be put in quantitative relation with the VDOS by means of memory-function approaches. Further connections between relaxation and vibration are provided by the study of phonon linewidths in liquids and glasses, where a natural starting point is given by hydrodynamic theories. Finally, an agenda of outstanding issues including the appearance of compressed exponential relaxation in the intermediate scattering function of experimental and simulated systems (metal alloys, colloidal gels, jammed packings) is presented in light of available (or yet to be developed) mathematical models, and compared to non-exponential behaviour measured with macroscopic means such as mechanical spectroscopy/rheology.File | Dimensione | Formato | |
---|---|---|---|
JPCM-115093_revised.pdf
accesso aperto
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
1.84 MB
Formato
Adobe PDF
|
1.84 MB | Adobe PDF | Visualizza/Apri |
Zaccone_2020_J._Phys.__Condens._Matter_32_203001.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
3.2 MB
Formato
Adobe PDF
|
3.2 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.