We investigate if the discrepancy between estimates of the total baryon mass fraction obtained from observations of the cosmic microwave background (CMB) and of galaxy groups/clusters persists when a large sample of groups is considered. To this purpose, 91 candidate X-ray groups/poor clusters at redshift 0.1 <= z <= 1 are selected from the COSMOS 2 deg(2) survey, based only on their X-ray luminosity and extent. This sample is complemented by 27 nearby clusters with a robust, analogous determination of the total and stellar mass inside R(500). The total sample of 118 groups and clusters with z <= 1 spans a range in M(500) of similar to 10(13)-10(15) M(circle dot). We find that the stellar mass fraction associated with galaxies at R(500) decreases with increasing total mass as M(500)(-0.37+/-0.04), independent of redshift. Estimating the total gas mass fraction from a recently derived, high-quality scaling relation, the total baryon mass fraction (f(500)(stars+gas) = f(500)(stars) + f(500)(gas)) is found to increase by similar to 25%, when M(500) increases from < M > = 5 x 10(13) M(circle dot) to < M > = 7 x 10(14)M(circle dot). After consideration of a plausible contribution due to intracluster light (11%-22% of the total stellar mass) and gas depletion through the hierarchical assembly process (10% of the gas mass), the estimated values of the total baryon mass fraction are still lower than the latest CMB measure of the same quantity (WMAP5), at a significance level of 3.3 sigma for groups of < M > = 5 x 10(13) M(circle dot). The discrepancy decreases toward higher total masses, such that it is 1 sigma at < M > = 7 x 10(14) M(circle dot). We discuss this result in terms of nongravitational processes such as feedback and filamentary heating.

Stellar and total baryon mass fractions in groups and clusters since redshift 1 / S. Giodini, D. Pierini, A. Finoguenov, G.W. Pratt, H. Boehringer, A. Leauthaud, GUZZO LUIGI, H. Aussel, M. Bolzonella, P. Capak, M. Elvis, G. Hasinger, O. Ilbert, J.S. Kartaltepe, A.M. Koekemoer, S.J. Lilly, R. Massey, H.J. Mccracken, J. Rhodes, M. Salvato, D.B. Sanders, N.Z. Scoville, S. Sasaki, V. Smolcic, Y. Taniguchi, D. Thompson. - In: THE ASTROPHYSICAL JOURNAL. - ISSN 0004-637X. - 703:1(2009), pp. 982-993. [10.1088/0004-637X/703/1/982]

Stellar and total baryon mass fractions in groups and clusters since redshift 1

L. Guzzo;
2009

Abstract

We investigate if the discrepancy between estimates of the total baryon mass fraction obtained from observations of the cosmic microwave background (CMB) and of galaxy groups/clusters persists when a large sample of groups is considered. To this purpose, 91 candidate X-ray groups/poor clusters at redshift 0.1 <= z <= 1 are selected from the COSMOS 2 deg(2) survey, based only on their X-ray luminosity and extent. This sample is complemented by 27 nearby clusters with a robust, analogous determination of the total and stellar mass inside R(500). The total sample of 118 groups and clusters with z <= 1 spans a range in M(500) of similar to 10(13)-10(15) M(circle dot). We find that the stellar mass fraction associated with galaxies at R(500) decreases with increasing total mass as M(500)(-0.37+/-0.04), independent of redshift. Estimating the total gas mass fraction from a recently derived, high-quality scaling relation, the total baryon mass fraction (f(500)(stars+gas) = f(500)(stars) + f(500)(gas)) is found to increase by similar to 25%, when M(500) increases from < M > = 5 x 10(13) M(circle dot) to < M > = 7 x 10(14)M(circle dot). After consideration of a plausible contribution due to intracluster light (11%-22% of the total stellar mass) and gas depletion through the hierarchical assembly process (10% of the gas mass), the estimated values of the total baryon mass fraction are still lower than the latest CMB measure of the same quantity (WMAP5), at a significance level of 3.3 sigma for groups of < M > = 5 x 10(13) M(circle dot). The discrepancy decreases toward higher total masses, such that it is 1 sigma at < M > = 7 x 10(14) M(circle dot). We discuss this result in terms of nongravitational processes such as feedback and filamentary heating.
cosmological parameters; cosmology: observations; diffuse radiation; galaxies: clusters: general; galaxies: stellar content; X-rays: galaxies: clusters
Settore FIS/05 - Astronomia e Astrofisica
2009
Article (author)
File in questo prodotto:
File Dimensione Formato  
giodini_apj_703_1_982.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/709850
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 245
  • ???jsp.display-item.citation.isi??? 244
social impact