Despite the massive presence of biofilms causing aesthetic alteration to the facade of the Monza Cathedral, our team in a previous work proved that the biocolonization was not a primary damaging factor if compared to chemical-physical deterioration due to the impact of air pollution. Nonetheless, the conservators tried to remove the sessile dwelling microorganisms to reduce discolouration. In this research, two nearby sculpted leaves made of Candoglia marble were selected to study the effects of a chemical treatment combining the biocides benzalkonium chloride, hydrogen peroxide and Algophase® and mechanical cleaning procedures. One leaf was cleaned with the biocides and mechanically, and the other was left untreated as control. The impact of the treatment was investigated after 1 month from the cleaning by digital microscopy, environmental scanning electron microscopy, confocal microscopy and molecular methods to determine the composition and the functional profiles of the bacterial communities. Despite the acceptable aesthetic results obtained, the overall cleaning treatment was only partially effective in removing the biofilm from the colonized surfaces and, therefore, not adequately suitable for the specific substrate. Furthermore, the cleaning process selected microorganisms potentially more resistant to biocides so that the efficacy of future re-treatment by antimicrobial agents could be negatively affected.
Aesthetic Alteration of Marble Surfaces Caused by Biofilm Formation: Effects of Chemical Cleaning / F. Villa, D. Gulotta, L. Toniolo, L. Borruso, C. Cattò, F. Cappitelli. - In: COATINGS. - ISSN 2079-6412. - 10:2(2020 Feb 01). [10.3390/coatings10020122]
Aesthetic Alteration of Marble Surfaces Caused by Biofilm Formation: Effects of Chemical Cleaning
F. VillaPrimo
;L. Borruso;C. CattòPenultimo
;F. Cappitelli
Ultimo
2020
Abstract
Despite the massive presence of biofilms causing aesthetic alteration to the facade of the Monza Cathedral, our team in a previous work proved that the biocolonization was not a primary damaging factor if compared to chemical-physical deterioration due to the impact of air pollution. Nonetheless, the conservators tried to remove the sessile dwelling microorganisms to reduce discolouration. In this research, two nearby sculpted leaves made of Candoglia marble were selected to study the effects of a chemical treatment combining the biocides benzalkonium chloride, hydrogen peroxide and Algophase® and mechanical cleaning procedures. One leaf was cleaned with the biocides and mechanically, and the other was left untreated as control. The impact of the treatment was investigated after 1 month from the cleaning by digital microscopy, environmental scanning electron microscopy, confocal microscopy and molecular methods to determine the composition and the functional profiles of the bacterial communities. Despite the acceptable aesthetic results obtained, the overall cleaning treatment was only partially effective in removing the biofilm from the colonized surfaces and, therefore, not adequately suitable for the specific substrate. Furthermore, the cleaning process selected microorganisms potentially more resistant to biocides so that the efficacy of future re-treatment by antimicrobial agents could be negatively affected.File | Dimensione | Formato | |
---|---|---|---|
2020_Villa_Aesthetic alteration of marble surfaces caused by biofilm formation effects of chemical cleaning.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
5.74 MB
Formato
Adobe PDF
|
5.74 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.