As in the case of most G protein-coupled receptors, agonist stimulation of human oxytocin receptors (OTRs) leads to desensitization and internalization; however, little is known about the subsequent intracellular OTR trafficking, which is crucial for reestablishing agonist responsiveness. We examined receptor resensitization by first using HEK293T cells stably expressing human OTRs. Upon agonist activation, the receptors were almost completely sequestered inside intracellular compartments that were not labeled by lysosomal markers, thus indicating that the internalized receptors were not sorted to these degrading organelles. Binding and fluorescence assays showed that almost 85% of the receptors had returned to the cell surface after 4 h, by which time cell responsiveness to the agonist was also completely restored, as shown by measuring phospholipase C activation. Similar results were also obtained in the presence of cycloheximide, thus indicating that receptor recycling and not de novo receptor synthesis was responsible for the resensitization. Notably, very similar internalization and recycling kinetics were observed in endogenous OTRs expressed on myometrial cells. We also investigated the role of β-arrestin2 in OTR recycling as these receptors have been previously classified as slowly or nonrecycling receptors on the basis of their stable association with this interacting protein. Our data suggest that the stable OTR/β-arrestin2 interaction plays an important role in determining the rate of recycling of human OTRs, but does not determine the fate of endocytosed receptors. Subsequent investigations of receptor recycling pathways showed that OTRs localize in vesicles containing the Rab5 and Rab4 small GTPases (markers of the "short cycle"), whereas there was no colocalization with Rab11 (a marker of the "long cycle") or Rab7 (a marker of vesicles directed to endosomal/lysosomal compartments). Taken together, these data indicate that OTRs are capable of very efficient and complete resensitization due to receptor recycling via the short cycle.

Intracellular trafficking of the human oxytocin receptor: Evidence of receptor recycling via a Rab4/Rab5 "short cycle" / F. Conti, S. Sertic, REVERSI ALESSANDRA, B. Chini. - In: AMERICAN JOURNAL OF PHYSIOLOGY: ENDOCRINOLOGY AND METABOLISM. - ISSN 0193-1849. - 296:3(2009), pp. E532-E542. [10.1152/ajpendo.90590.2008]

Intracellular trafficking of the human oxytocin receptor: Evidence of receptor recycling via a Rab4/Rab5 "short cycle"

S. Sertic;A. Reversi;
2009

Abstract

As in the case of most G protein-coupled receptors, agonist stimulation of human oxytocin receptors (OTRs) leads to desensitization and internalization; however, little is known about the subsequent intracellular OTR trafficking, which is crucial for reestablishing agonist responsiveness. We examined receptor resensitization by first using HEK293T cells stably expressing human OTRs. Upon agonist activation, the receptors were almost completely sequestered inside intracellular compartments that were not labeled by lysosomal markers, thus indicating that the internalized receptors were not sorted to these degrading organelles. Binding and fluorescence assays showed that almost 85% of the receptors had returned to the cell surface after 4 h, by which time cell responsiveness to the agonist was also completely restored, as shown by measuring phospholipase C activation. Similar results were also obtained in the presence of cycloheximide, thus indicating that receptor recycling and not de novo receptor synthesis was responsible for the resensitization. Notably, very similar internalization and recycling kinetics were observed in endogenous OTRs expressed on myometrial cells. We also investigated the role of β-arrestin2 in OTR recycling as these receptors have been previously classified as slowly or nonrecycling receptors on the basis of their stable association with this interacting protein. Our data suggest that the stable OTR/β-arrestin2 interaction plays an important role in determining the rate of recycling of human OTRs, but does not determine the fate of endocytosed receptors. Subsequent investigations of receptor recycling pathways showed that OTRs localize in vesicles containing the Rab5 and Rab4 small GTPases (markers of the "short cycle"), whereas there was no colocalization with Rab11 (a marker of the "long cycle") or Rab7 (a marker of vesicles directed to endosomal/lysosomal compartments). Taken together, these data indicate that OTRs are capable of very efficient and complete resensitization due to receptor recycling via the short cycle.
internalization; endocytosis; Rab GTPases
Settore BIO/11 - Biologia Molecolare
Settore BIO/14 - Farmacologia
2009
Article (author)
File in questo prodotto:
File Dimensione Formato  
Conti-Sertic et al2009.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/708461
Citazioni
  • ???jsp.display-item.citation.pmc??? 35
  • Scopus 87
  • ???jsp.display-item.citation.isi??? 85
social impact