We strengthen and generalize results of J. M. Borwein [Generic differentiability of order-bounded convex operators, J. Austral. Math. Soc. Ser. B 28 (1986) 22–29] and of A. Ioffe and R. E. Lucchetti [Typical convex program is very well posed, Math. Program. 104 (2005) 483–499] on Fréchet and Gâteaux differentiability of saddle and biconvex functions (and operators). For example, we prove that in many cases (also in some cases which were not considered before) these functions (and operators) are Fréchet differentiable except for a Γ-null, σ-lower porous set. Moreover, we prove these results for more general “partially convex (up or down)” functions and operators defined on the product of n Banach spaces.

On differentiability of saddle and biconvex functions and operators / L. Vesely, L. Zajicek. - In: JOURNAL OF CONVEX ANALYSIS. - ISSN 0944-6532. - 27:2(2020), pp. 705-731.

On differentiability of saddle and biconvex functions and operators

L. Vesely
Primo
;
2020

Abstract

We strengthen and generalize results of J. M. Borwein [Generic differentiability of order-bounded convex operators, J. Austral. Math. Soc. Ser. B 28 (1986) 22–29] and of A. Ioffe and R. E. Lucchetti [Typical convex program is very well posed, Math. Program. 104 (2005) 483–499] on Fréchet and Gâteaux differentiability of saddle and biconvex functions (and operators). For example, we prove that in many cases (also in some cases which were not considered before) these functions (and operators) are Fréchet differentiable except for a Γ-null, σ-lower porous set. Moreover, we prove these results for more general “partially convex (up or down)” functions and operators defined on the product of n Banach spaces.
Settore MAT/05 - Analisi Matematica
   Proprietà strutturali e geometria degli spazi di Banach
   ISTITUTO NAZIONALE DI ALTA MATEMATICA "FRANCESCO SEVERI" DI ROMA
2020
http://www.heldermann.de.pros.lib.unimi.it/JCA/JCA27/JCA272/jca27036.htm
Article (author)
File in questo prodotto:
File Dimensione Formato  
Vesely_Zajicek_LAST.pdf

accesso riservato

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 344.87 kB
Formato Adobe PDF
344.87 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/708189
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact