We strengthen and generalize results of J. M. Borwein [Generic differentiability of order-bounded convex operators, J. Austral. Math. Soc. Ser. B 28 (1986) 22–29] and of A. Ioffe and R. E. Lucchetti [Typical convex program is very well posed, Math. Program. 104 (2005) 483–499] on Fréchet and Gâteaux differentiability of saddle and biconvex functions (and operators). For example, we prove that in many cases (also in some cases which were not considered before) these functions (and operators) are Fréchet differentiable except for a Γ-null, σ-lower porous set. Moreover, we prove these results for more general “partially convex (up or down)” functions and operators defined on the product of n Banach spaces.
On differentiability of saddle and biconvex functions and operators / L. Vesely, L. Zajicek. - In: JOURNAL OF CONVEX ANALYSIS. - ISSN 0944-6532. - 27:2(2020), pp. 705-731.
On differentiability of saddle and biconvex functions and operators
L. Vesely
Primo
;
2020
Abstract
We strengthen and generalize results of J. M. Borwein [Generic differentiability of order-bounded convex operators, J. Austral. Math. Soc. Ser. B 28 (1986) 22–29] and of A. Ioffe and R. E. Lucchetti [Typical convex program is very well posed, Math. Program. 104 (2005) 483–499] on Fréchet and Gâteaux differentiability of saddle and biconvex functions (and operators). For example, we prove that in many cases (also in some cases which were not considered before) these functions (and operators) are Fréchet differentiable except for a Γ-null, σ-lower porous set. Moreover, we prove these results for more general “partially convex (up or down)” functions and operators defined on the product of n Banach spaces.File | Dimensione | Formato | |
---|---|---|---|
Vesely_Zajicek_LAST.pdf
accesso riservato
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
344.87 kB
Formato
Adobe PDF
|
344.87 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.