The problem of detecting a major change point in a stochastic process is often of interest in applications, in particular when the effects of modifications of some external variables, on the process itself, must be identified. We here propose a modification of the classical Pearson Chisquare test to detect the presence of such major change point in the transition probabilities of an inhomogeneous discrete time Markov Chain, taking values in a finite space. The test can be applied also in presence of big identically distributed samples of the Markov Chain under study, which might not be necessarily independent. The test is based on the maximum likelihood estimate of the size of the ’right’ experimental unit, i.e. the units that must be aggregated to filter out the small scale variability of the transition probabilities. We here apply our test both to simulated data and to a real dataset, to study the impact, on farmland uses, of the new Common Agricultural Policy, which entered into force in EU in 2015.

A weighted $$chi ^2$$χ2 test to detect the presence of a major change point in non-stationary Markov chains / A. Micheletti, G. Aletti, G. Ferrandi, D. Bertoni, D. Cavicchioli, R. Pretolani. - In: STATISTICAL METHODS & APPLICATIONS. - ISSN 1618-2510. - (2020). [Epub ahead of print] [10.1007/s10260-020-00510-0]

A weighted $$chi ^2$$χ2 test to detect the presence of a major change point in non-stationary Markov chains

A. Micheletti
Primo
Writing – Original Draft Preparation
;
G. Aletti
Secondo
Writing – Review & Editing
;
D. Bertoni
Membro del Collaboration Group
;
D. Cavicchioli
Penultimo
Membro del Collaboration Group
;
R. Pretolani
Ultimo
Membro del Collaboration Group
2020

Abstract

The problem of detecting a major change point in a stochastic process is often of interest in applications, in particular when the effects of modifications of some external variables, on the process itself, must be identified. We here propose a modification of the classical Pearson Chisquare test to detect the presence of such major change point in the transition probabilities of an inhomogeneous discrete time Markov Chain, taking values in a finite space. The test can be applied also in presence of big identically distributed samples of the Markov Chain under study, which might not be necessarily independent. The test is based on the maximum likelihood estimate of the size of the ’right’ experimental unit, i.e. the units that must be aggregated to filter out the small scale variability of the transition probabilities. We here apply our test both to simulated data and to a real dataset, to study the impact, on farmland uses, of the new Common Agricultural Policy, which entered into force in EU in 2015.
Weighted chisquare test; Inhomogeneous discrete time Markov chains; Nonparametric inference
Settore MAT/06 - Probabilita' e Statistica Matematica
Settore AGR/01 - Economia ed Estimo Rurale
Settore SECS-S/01 - Statistica
   Big Data Challenges for Mathematics (BIGMATH)
   BIGMATH
   EUROPEAN COMMISSION
   H2020
   812912

   Evaluation of CAP 2015-2020 and taking action (CAPTION)
   CAPTION
   FONDAZIONE CARIPLO
   2017-2513
2020
27-gen-2020
Centro di Ricerca Interdisciplinare su Modellistica Matematica, Analisi Statistica e Simulazione Computazionale per la Innovazione Scientifica e Tecnologica ADAMSS
Article (author)
File in questo prodotto:
File Dimensione Formato  
Micheletti2020_Article_AWeightedChi2Χ2TestToDetectThe.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 451.64 kB
Formato Adobe PDF
451.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
chi2weighted_revised2.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 458.67 kB
Formato Adobe PDF
458.67 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/707665
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact