In a fractionally cointegrated model, we analyze, both theoretically and by means of a Monte Carlo experiment, the performance of the most popular first stage estimation methods, including ordinary and narrow band least squares (Robinson, 1994), difference taper narrow band least squares (Chen and Hurvich, 2003a), instrumental variables (Robinson and Gerolimetto, 2006), and compare it with the behavior of a new proposal, the integrated ordinary least squares. An appropriate version of this latter estimator (and also of the instrumental variables one) achieves in all circumstances the fastest convergence rate (among other first stage methods) and performs well in finite samples. The use of improved first stage methods is most important in cases of low collective memory of regressor and cointegrating error. This is particularly relevant in multivariate settings, where the key parameters which rule the convergence properties of the estimators are the memories of adjacent cointegrating subspaces
First Stage Estimation of Fractional Cointegration / J. Hualde, F. Iacone. - In: JOURNAL OF TIME SERIES ECONOMETRICS. - ISSN 1941-1928. - 4:1(2012), pp. 2.1-2.30. [10.1515/1941-1928.1129]
First Stage Estimation of Fractional Cointegration
F. Iacone
2012
Abstract
In a fractionally cointegrated model, we analyze, both theoretically and by means of a Monte Carlo experiment, the performance of the most popular first stage estimation methods, including ordinary and narrow band least squares (Robinson, 1994), difference taper narrow band least squares (Chen and Hurvich, 2003a), instrumental variables (Robinson and Gerolimetto, 2006), and compare it with the behavior of a new proposal, the integrated ordinary least squares. An appropriate version of this latter estimator (and also of the instrumental variables one) achieves in all circumstances the fastest convergence rate (among other first stage methods) and performs well in finite samples. The use of improved first stage methods is most important in cases of low collective memory of regressor and cointegrating error. This is particularly relevant in multivariate settings, where the key parameters which rule the convergence properties of the estimators are the memories of adjacent cointegrating subspacesFile | Dimensione | Formato | |
---|---|---|---|
I-OLS.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
331.72 kB
Formato
Adobe PDF
|
331.72 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.