Insulin resistance (IR) and microRNAs (miRNAs), which regulate cell-to-cell communication between hepatocytes and hepatic stellate cells (HSCs), may intertwine in nonalcoholic fatty liver disease (NAFLD) pathogenesis. The aim of this study was to evaluate whether epigenetics and environmental factors interact to promote progressive NAFLD during IR. We examined the miRNA signature in insulin receptor haploinsufficient (InsR+/−) and wild-type (wt) HSCs by RNAseq (n = 4 per group). Then, we evaluated their impact in an IR-NASH (nonalcoholic steatohepatitis) model (InsR+/− mice fed standard or methionine choline deficient (MCD) diet, n = 10 per group) and in vitro. InsR+/− HSCs displayed 36 differentially expressed miRNAs (p < 0.05 vs. wt), whose expression was then analyzed in the liver of InsR+/− mice fed an MCD diet. We found that miR-101-3p negatively associated with both InsR+/− genotype and MCD (p < 0.05) and the histological spectrum of liver damage (p < 0.01). miR-101-3p was reduced in InsR+/− hepatocytes and HSCs and even more in InsR+/− cells exposed to insulin (0.33 µM) and fatty acids (0.25 mM), resembling the IR-NASH model. Conversely, insulin induced miR-101-3p expression in wt cells but not in InsR+/− ones (p < 0.05). In conclusion, IR combined with diet-induced liver injury favors miR-101-3p downregulation, which may promote progressive NAFLD through HSC and hepatocyte transdifferentiation and proliferation.

Mir-101-3p downregulation promotes fibrogenesis by facilitating hepatic stellate cell transdifferentiation during insulin resistance / M. Meroni, M. Longo, V. Erconi, L. Valenti, S. Gatti, A.L. Fracanzani, P. Dongiovanni. - In: NUTRIENTS. - ISSN 2072-6643. - 11:11(2019 Oct 29), pp. 2597.1-2597.11. [10.3390/nu11112597]

Mir-101-3p downregulation promotes fibrogenesis by facilitating hepatic stellate cell transdifferentiation during insulin resistance

M. Meroni;M. Longo;L. Valenti;A.L. Fracanzani;P. Dongiovanni
2019

Abstract

Insulin resistance (IR) and microRNAs (miRNAs), which regulate cell-to-cell communication between hepatocytes and hepatic stellate cells (HSCs), may intertwine in nonalcoholic fatty liver disease (NAFLD) pathogenesis. The aim of this study was to evaluate whether epigenetics and environmental factors interact to promote progressive NAFLD during IR. We examined the miRNA signature in insulin receptor haploinsufficient (InsR+/−) and wild-type (wt) HSCs by RNAseq (n = 4 per group). Then, we evaluated their impact in an IR-NASH (nonalcoholic steatohepatitis) model (InsR+/− mice fed standard or methionine choline deficient (MCD) diet, n = 10 per group) and in vitro. InsR+/− HSCs displayed 36 differentially expressed miRNAs (p < 0.05 vs. wt), whose expression was then analyzed in the liver of InsR+/− mice fed an MCD diet. We found that miR-101-3p negatively associated with both InsR+/− genotype and MCD (p < 0.05) and the histological spectrum of liver damage (p < 0.01). miR-101-3p was reduced in InsR+/− hepatocytes and HSCs and even more in InsR+/− cells exposed to insulin (0.33 µM) and fatty acids (0.25 mM), resembling the IR-NASH model. Conversely, insulin induced miR-101-3p expression in wt cells but not in InsR+/− ones (p < 0.05). In conclusion, IR combined with diet-induced liver injury favors miR-101-3p downregulation, which may promote progressive NAFLD through HSC and hepatocyte transdifferentiation and proliferation.
Fibrosis; HCC; Hepatic stellate cells; MiR-101-3p; NAFLD
Settore MED/09 - Medicina Interna
29-ott-2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
nutrients-11-02597.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 4.24 MB
Formato Adobe PDF
4.24 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/707026
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 22
social impact