In the Monte Duria area (Adula-Cima Lunga unit, Central Alps, N Italy) garnet peridotites occur in direct contact with migmatised orthogneiss (Mt. Duria) and eclogites (Borgo). Both eclogites and ultramafic rocks share a common high pressure (HP) peak at 2.8 GPa and 750 °C and post-peak static equilibration at 0.8–1.0 GPa and 850 °C. Garnet peridotites show abundant amphibole, dolomite, phlogopite and orthopyroxene after olivine, suggesting that they experienced metasomatism by crust-derived agents enriched in SiO2, K2O, CO2 and H2O. Peridotites also display LREE fractionation (La/Nd = 2.4) related to LREE-rich amphibole and clinopyroxene grown in equilibrium with garnet, indicating that metasomatism occurred at HP conditions. At Borgo, retrogressed garnet peridotites show low strain domains characterised by garnet compositional layering, cut by a subsequent low-pressure (LP) chlorite foliation, in direct contact with migmatised eclogites. Kfs + Pl + Qz + Cpx interstitial pocket aggregates and Cpx + Kfs thin films around symplectites after omphacite parallel to the Zo + Omp + Grt foliation in the eclogites suggest that they underwent partial melting at HP. The contact between garnet peridotites and eclogites is marked by a tremolitite layer. The same rock also occurs as layers within the peridotite lens, showing a boudinage parallel to the garnet layering of peridotites, flowing in the boudin necks. This clearly indicates that the tremolitite boudins formed when peridotites were in the garnet stability field. Tremolitites also show Phl + Tc + Chl + Tr pseudomorphs after garnet, both crystallised in a static regime postdating the boudins formation, suggesting that they derive from a garnet-bearing precursor. Tremolitites have Mg# > 0.90 and Al2O3 = 2.75 wt% pointing to ultramafic compositions but also show enrichments in SiO2, CaO, and LREE suggesting that they formed after the reaction between the eclogite-derived melt and the garnet peridotite at HP. To test this hypothesis, we performed a thermodynamic modelling at fixed P = 3 GPa and T = 750 °C to model the chemical interaction between the garnet peridotite and the eclogite-derived melt. Our results show that this interaction produces an Opx + Cpx + Grt assemblage plus Amp + Phl, depending on the water activity in the melt, suggesting that tremolitites likely derive from a previous garnet websterite with amphibole and phlogopite. Both peridotites and tremolitites also show a selective enrichment in LILE recorded by amphiboles in the spinel stability field, indicating that a fluid-assisted metasomatic event occurred at LP conditions, leading to the formation of a chlorite foliation post-dating the garnet layering in peridotites, and the retrogression of Grt-websterites in tremolitites. The Monte Duria area is a unique terrane where we can observe syn-deformation eclogite-derived melt interacting with garnet peridotite at HP, proxy of subduction environments.

High pressure melting of eclogite and metasomatism of garnet peridotites from Monte Duria Area (Central Alps, N Italy): A proxy for melt-rock reaction during subduction / L. Pellegrino, N. Malaspina, S. Zanchetta, A. Langone, S. Tumiati. - In: LITHOS. - ISSN 0024-4937. - 358-359:(2020), pp. 105391.1-105391.25. [10.1016/j.lithos.2020.105391]

High pressure melting of eclogite and metasomatism of garnet peridotites from Monte Duria Area (Central Alps, N Italy): A proxy for melt-rock reaction during subduction

L. Pellegrino
Primo
;
N. Malaspina
;
S. Zanchetta;S. Tumiati
Ultimo
2020

Abstract

In the Monte Duria area (Adula-Cima Lunga unit, Central Alps, N Italy) garnet peridotites occur in direct contact with migmatised orthogneiss (Mt. Duria) and eclogites (Borgo). Both eclogites and ultramafic rocks share a common high pressure (HP) peak at 2.8 GPa and 750 °C and post-peak static equilibration at 0.8–1.0 GPa and 850 °C. Garnet peridotites show abundant amphibole, dolomite, phlogopite and orthopyroxene after olivine, suggesting that they experienced metasomatism by crust-derived agents enriched in SiO2, K2O, CO2 and H2O. Peridotites also display LREE fractionation (La/Nd = 2.4) related to LREE-rich amphibole and clinopyroxene grown in equilibrium with garnet, indicating that metasomatism occurred at HP conditions. At Borgo, retrogressed garnet peridotites show low strain domains characterised by garnet compositional layering, cut by a subsequent low-pressure (LP) chlorite foliation, in direct contact with migmatised eclogites. Kfs + Pl + Qz + Cpx interstitial pocket aggregates and Cpx + Kfs thin films around symplectites after omphacite parallel to the Zo + Omp + Grt foliation in the eclogites suggest that they underwent partial melting at HP. The contact between garnet peridotites and eclogites is marked by a tremolitite layer. The same rock also occurs as layers within the peridotite lens, showing a boudinage parallel to the garnet layering of peridotites, flowing in the boudin necks. This clearly indicates that the tremolitite boudins formed when peridotites were in the garnet stability field. Tremolitites also show Phl + Tc + Chl + Tr pseudomorphs after garnet, both crystallised in a static regime postdating the boudins formation, suggesting that they derive from a garnet-bearing precursor. Tremolitites have Mg# > 0.90 and Al2O3 = 2.75 wt% pointing to ultramafic compositions but also show enrichments in SiO2, CaO, and LREE suggesting that they formed after the reaction between the eclogite-derived melt and the garnet peridotite at HP. To test this hypothesis, we performed a thermodynamic modelling at fixed P = 3 GPa and T = 750 °C to model the chemical interaction between the garnet peridotite and the eclogite-derived melt. Our results show that this interaction produces an Opx + Cpx + Grt assemblage plus Amp + Phl, depending on the water activity in the melt, suggesting that tremolitites likely derive from a previous garnet websterite with amphibole and phlogopite. Both peridotites and tremolitites also show a selective enrichment in LILE recorded by amphiboles in the spinel stability field, indicating that a fluid-assisted metasomatic event occurred at LP conditions, leading to the formation of a chlorite foliation post-dating the garnet layering in peridotites, and the retrogression of Grt-websterites in tremolitites. The Monte Duria area is a unique terrane where we can observe syn-deformation eclogite-derived melt interacting with garnet peridotite at HP, proxy of subduction environments.
No
English
Slab melting; Websterite; Subduction fluids; Dolomite; Adula nappe
Settore GEO/07 - Petrologia e Petrografia
Articolo
Esperti anonimi
Ricerca di base
Pubblicazione scientifica
2020
358-359
105391
1
25
25
Pubblicato
Periodico con rilevanza internazionale
crossref
Aderisco
info:eu-repo/semantics/article
High pressure melting of eclogite and metasomatism of garnet peridotites from Monte Duria Area (Central Alps, N Italy): A proxy for melt-rock reaction during subduction / L. Pellegrino, N. Malaspina, S. Zanchetta, A. Langone, S. Tumiati. - In: LITHOS. - ISSN 0024-4937. - 358-359:(2020), pp. 105391.1-105391.25. [10.1016/j.lithos.2020.105391]
partially_open
Prodotti della ricerca::01 - Articolo su periodico
5
262
Article (author)
Periodico con Impact Factor
L. Pellegrino, N. Malaspina, S. Zanchetta, A. Langone, S. Tumiati
File in questo prodotto:
File Dimensione Formato  
PellegrinoEtAl_v.6_clean_Rev.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 439.9 kB
Formato Adobe PDF
439.9 kB Adobe PDF Visualizza/Apri
1-s2.0-S0024493720300281-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 12.83 MB
Formato Adobe PDF
12.83 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/706081
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact