In this paper, we analyse giant gap-opening planet migration in proto-planetary discs, focusing on the type II migration regime. According to standard type II theory, planets migrate at the same rate as the gas in the disc, as they are coupled to the disc viscous evolution; however, recent studies questioned this paradigm, suggesting that planets migrate faster than the disc material. We study the problem through 2D long-time simulations of systems consistent with type II regime, using the hydrodynamical grid code FARGO3D. Even though our simulations confirm the presence of an initial phase characterized by fast migration, they also reveal that the migration velocity slows down and eventually reaches the theoretical prediction if we allow the system to evolve for enough time. We find the same tendency to evolve towards the theoretical predictions at later times when we analyse the mass flow through the gap and the torques acting on the planet. This transient is related to the initial conditions of our (and previous) simulations, and is due to the fact that the shape of the gap has to adjust to a new profile, once the planet is set into motion. Secondly, we test whether the type II theory expectation that giant planet migration is driven by viscosity is consistent with our simulation by comparing simulations with the same viscosity and different disc masses (or vice versa). We find a good agreement with the theory, since when the discs are characterized by the same viscosity, the migration properties are the same.

Type II migration strikes back – an old paradigm for planet migration in discs / C.E. Scardoni, G.P. Rosotti, G. Lodato, C.J. Clarke. - In: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - ISSN 0035-8711. - 492:1(2020), pp. 1318-1328. [10.1093/mnras/stz3534]

Type II migration strikes back – an old paradigm for planet migration in discs

G.P. Rosotti;G. Lodato;
2020

Abstract

In this paper, we analyse giant gap-opening planet migration in proto-planetary discs, focusing on the type II migration regime. According to standard type II theory, planets migrate at the same rate as the gas in the disc, as they are coupled to the disc viscous evolution; however, recent studies questioned this paradigm, suggesting that planets migrate faster than the disc material. We study the problem through 2D long-time simulations of systems consistent with type II regime, using the hydrodynamical grid code FARGO3D. Even though our simulations confirm the presence of an initial phase characterized by fast migration, they also reveal that the migration velocity slows down and eventually reaches the theoretical prediction if we allow the system to evolve for enough time. We find the same tendency to evolve towards the theoretical predictions at later times when we analyse the mass flow through the gap and the torques acting on the planet. This transient is related to the initial conditions of our (and previous) simulations, and is due to the fact that the shape of the gap has to adjust to a new profile, once the planet is set into motion. Secondly, we test whether the type II theory expectation that giant planet migration is driven by viscosity is consistent with our simulation by comparing simulations with the same viscosity and different disc masses (or vice versa). We find a good agreement with the theory, since when the discs are characterized by the same viscosity, the migration properties are the same.
accretion, accretion discs; hydrodynamics; protoplanetary discs; circumstellar matter; planet-disc interactions
Settore FIS/05 - Astronomia e Astrofisica
   Dust and gas in planet forming discs (DUSTBUSTER)
   DUSTBUSTER
   EUROPEAN COMMISSION
   H2020
   823823
2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
Scardonietal2020.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 878.99 kB
Formato Adobe PDF
878.99 kB Adobe PDF Visualizza/Apri
stz3534.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 798.26 kB
Formato Adobe PDF
798.26 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/704607
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact