The primary stratigraphic fabric of a chaotic rock unit in the Zermatt Saas ophiolite of the Western Alps was reworked by a polyphase Alpine tectonic deformation. Multiscalar structural criteria demonstrate that this unit was deformed by two ductile subduction-related phases followed by brittle-ductile then brittle deformation. Deformation partitioning operated at various scales, leaving relatively unstrained rock domains preserving internal texture, organization, and composition. During subduction, ductile deformation involved stretching, boudinage, and simultaneous folding of the primary stratigraphic succession. This deformation is particularly well-documented in alternating layers showing contrasting deformation style, such as carbonate-rich rocks and turbiditic serpentinite metasandstones. During collision and exhumation, deformation enhanced the boudinaged horizons and blocks, giving rise to spherical to lozenge-shaped blocks embedded in a carbonate-rich matrix. Structural criteria allow the recognition of two main domains within the chaotic rock unit, one attributable to original broken formations reflecting turbiditic sedimentation, the other ascribable to an original sedimentary mélange. The envisaged geodynamic setting for the formation of the protoliths is the Jurassic Ligurian-Piedmont ocean basin floored by mostly serpentinized peridotites, intensely tectonized by extensional faults that triggered mass transport processes and turbiditic sedimentation.
Superposed sedimentary and tectonic block-in-matrix fabrics in a subducted serpentinite mélange (High-pressure zermatt saas ophiolite, western alps) / P. Tartarotti, S. Guerini, F. Rotondo, A. Festa, G. Balestro, G.E. Bebout, E. Cannao, G.S. Epstein, M. Scambelluri. - In: GEOSCIENCES. - ISSN 2076-3263. - 9:8(2019 Aug), pp. 358.1-358.29. [10.3390/geosciences9080358]
Superposed sedimentary and tectonic block-in-matrix fabrics in a subducted serpentinite mélange (High-pressure zermatt saas ophiolite, western alps)
P. Tartarotti
;S. Guerini;E. Cannao;
2019
Abstract
The primary stratigraphic fabric of a chaotic rock unit in the Zermatt Saas ophiolite of the Western Alps was reworked by a polyphase Alpine tectonic deformation. Multiscalar structural criteria demonstrate that this unit was deformed by two ductile subduction-related phases followed by brittle-ductile then brittle deformation. Deformation partitioning operated at various scales, leaving relatively unstrained rock domains preserving internal texture, organization, and composition. During subduction, ductile deformation involved stretching, boudinage, and simultaneous folding of the primary stratigraphic succession. This deformation is particularly well-documented in alternating layers showing contrasting deformation style, such as carbonate-rich rocks and turbiditic serpentinite metasandstones. During collision and exhumation, deformation enhanced the boudinaged horizons and blocks, giving rise to spherical to lozenge-shaped blocks embedded in a carbonate-rich matrix. Structural criteria allow the recognition of two main domains within the chaotic rock unit, one attributable to original broken formations reflecting turbiditic sedimentation, the other ascribable to an original sedimentary mélange. The envisaged geodynamic setting for the formation of the protoliths is the Jurassic Ligurian-Piedmont ocean basin floored by mostly serpentinized peridotites, intensely tectonized by extensional faults that triggered mass transport processes and turbiditic sedimentation.File | Dimensione | Formato | |
---|---|---|---|
geosciences-09-00358-v2.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
18.65 MB
Formato
Adobe PDF
|
18.65 MB | Adobe PDF | Visualizza/Apri |
geosciences-09-00358-v2-min.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
1.96 MB
Formato
Adobe PDF
|
1.96 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.