Eight samples of limestones and marbles were studied by neutron diffraction to collect quantitative texture (i.e., crystallographic preferred orientations or CPO) of calcite deforming at different depths in the crust. We studied the different Texture patterns developed in shear zones at different depth and their influence on seismic anisotropies. Samples were collected in the French and Italian Alps, Apennines, and Paleozoic Sardinian basement. They are characterized by isotropic to highly anisotropic (e.g., mylonite shear zone) fabrics. Mylonite limestones occur as shear zone horizons within the Cenozoic Southern Domain in Alpine thrust-and-fold belts (Italy), the Briançonnais domain of the Western Alps (Italy-France border), the Sardinian Paleozoic back-thrusts, or in the Austroalpine intermediate units. The analyzed marbles were collected in the Carrara Marble, in the Austroalpine Units in the Central (Mortirolo) and Western Alps (Valpelline). The temperature and depth of development of fabrics vary from <100◦C, to 800◦C and depth from <10 km to about 30 km, corresponding from upper to lower crust conditions. Quantitative Texture Analysis shows different types of patterns for calcite: random to strongly textured. Textured types may be further separated in orthorhombic and monoclinic (Types A and B), based on the angle defined with the mesoscopic fabrics. Seismic anisotropies were calculated by homogenizing the single-crystal elastic tensor, using the Orientation Distribution Function calculated by Quantitative Texture Analysis. The resulting P-and S-wave anisotropies show a wide variability due to the textural types, temperature and pressure conditions, and dip of the shear planes.

Crystallographic and Seismic Anisotropies of Calcite at Different Depths : a Study Using Quantitative Texture Analysis by Neutron Diffraction / M. Zucali, D. Chateigner, B. Ouladdiaf. - In: MINERALS. - ISSN 2075-163X. - 10:1(2020 Jan), pp. 26.1-26.24. [10.3390/min10010026]

Crystallographic and Seismic Anisotropies of Calcite at Different Depths : a Study Using Quantitative Texture Analysis by Neutron Diffraction

Zucali, Michele;
2020-01

Abstract

Eight samples of limestones and marbles were studied by neutron diffraction to collect quantitative texture (i.e., crystallographic preferred orientations or CPO) of calcite deforming at different depths in the crust. We studied the different Texture patterns developed in shear zones at different depth and their influence on seismic anisotropies. Samples were collected in the French and Italian Alps, Apennines, and Paleozoic Sardinian basement. They are characterized by isotropic to highly anisotropic (e.g., mylonite shear zone) fabrics. Mylonite limestones occur as shear zone horizons within the Cenozoic Southern Domain in Alpine thrust-and-fold belts (Italy), the Briançonnais domain of the Western Alps (Italy-France border), the Sardinian Paleozoic back-thrusts, or in the Austroalpine intermediate units. The analyzed marbles were collected in the Carrara Marble, in the Austroalpine Units in the Central (Mortirolo) and Western Alps (Valpelline). The temperature and depth of development of fabrics vary from <100◦C, to 800◦C and depth from <10 km to about 30 km, corresponding from upper to lower crust conditions. Quantitative Texture Analysis shows different types of patterns for calcite: random to strongly textured. Textured types may be further separated in orthorhombic and monoclinic (Types A and B), based on the angle defined with the mesoscopic fabrics. Seismic anisotropies were calculated by homogenizing the single-crystal elastic tensor, using the Orientation Distribution Function calculated by Quantitative Texture Analysis. The resulting P-and S-wave anisotropies show a wide variability due to the textural types, temperature and pressure conditions, and dip of the shear planes.
Calcite; CPO; Crust; Neutron diffraction; Seismic anisotropy; Shear zone; Texture; Thrust
Settore GEO/03 - Geologia Strutturale
Article (author)
File in questo prodotto:
File Dimensione Formato  
minerals-10-00026-v2.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 15.43 MB
Formato Adobe PDF
15.43 MB Adobe PDF Visualizza/Apri
minerals-10-00026-v2-min.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/700287
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact