The determination of the primary energy of extensive air showers using the fluorescence detection technique requires an estimation of the energy carried away by particles that do not deposit all their energy in the atmosphere. This estimation is typically made using Monte Carlo simulations and thus depends on the assumed primary particle mass and on model predictions for neutrino and muon production. In this work we present a new method to obtain the invisible energy from events detected by the Pierre Auger Observatory. The method uses measurements of the muon number at ground level, and it allows us to significantly reduce the systematic uncertainties related to the mass composition and the high energy hadronic interaction models, and consequently to improve the estimation of the energy scale of the Pierre Auger Observatory.

Data-driven estimation of the invisible energy of cosmic ray showers with the Pierre Auger Observatory / A. Aab, P. Abreu, M. Aglietta, I.F.M. Albuquerque, J.M. Albury, I. Allekotte, A. Almela, J. Alvarez Castillo, J. Alvarez-Muniz, G.A. Anastasi, L. Anchordoqui, B. Andrada, S. Andringa, C. Aramo, H. Asorey, P. Assis, G. Avila, A.M. Badescu, A. Bakalova, A. Balaceanu, F. Barbato, R.J. Barreira Luz, S. Baur, K.H. Becker, J.A. Bellido, C. Berat, M.E. Bertaina, X. Bertou, P.L. Biermann, J. Biteau, S.G. Blaess, A. Blanco, J. Blazek, C. Bleve, M. Bohacova, D. Boncioli, C. Bonifazi, N. Borodai, A.M. Botti, J. Brack, T. Bretz, A. Bridgeman, F.L. Briechle, P. Buchholz, A. Bueno, S. Buitink, M. Buscemi, K.S. Caballero-Mora, L. Caccianiga, L. Calcagni, A. Cancio, F. Canfora, J.M. Carceller, R. Caruso, A. Castellina, F. Catalani, G. Cataldi, L. Cazon, M. Cerda, J.A. Chinellato, J. Chudoba, L. Chytka, R.W. Clay, A.C. Cobos Cerutti, R. Colalillo, A. Coleman, M.R. Coluccia, R. Conceicao, A. Condorelli, G. Consolati, F. Contreras, F. Convenga, M.J. Cooper, S. Coutu, C.E. Covault, B. Daniel, S. Dasso, K. Daumiller, B.R. Dawson, J.A. Day, R.M. De Almeida, S.J. De Jong, G. De Mauro, J.R.T. De Mello Neto, I. De Mitri, J. De Oliveira, F.O. De Oliveira Salles, V. De Souza, J. Debatin, M. Del Rio, O. Deligny, N. Dhital, M.L. Diaz Castro, F. Diogo, C. Dobrigkeit, J.C. D'Olivo, Q. Dorosti, R.C. Dos Anjos, M.T. Dova, A. Dundovic, J. Ebr, R. Engel, M. Erdmann, C.O. Escobar, A. Etchegoyen, H. Falcke, J. Farmer, G. Farrar, A.C. Fauth, N. Fazzini, F. Feldbusch, F. Fenu, L.P. Ferreyro, J.M. Figueira, A. Filipcic, M.M. Freire, T. Fujii, A. Fuster, B. Garcia, H. Gemmeke, A. Gherghel-Lascu, P.L. Ghia, U. Giaccari, M. Giammarchi, M. Giller, D. Glas, J. Glombitza, F. Gobbi, G. Golup, M. Gomez Berisso, P.F. Gomez Vitale, J.P. Gongora, N. Gonzalez, I. Goos, D. Gora, A. Gorgi, M. Gottowik, T.D. Grubb, F. Guarino, G.P. Guedes, E. Guido, R. Halliday, M.R. Hampel, P. Hansen, D. Harari, T.A. Harrison, V.M. Harvey, A. Haungs, T. Hebbeker, D. Heck, P. Heimann, G.C. Hill, C. Hojvat, E.M. Holt, P. Homola, J.R. Horandel, P. Horvath, M. Hrabovsky, T. Huege, J. Hulsman, A. Insolia, P.G. Isar, I. Jandt, J.A. Johnsen, M. Josebachuili, J. Jurysek, A. Kaapa, K.H. Kampert, B. Keilhauer, N. Kemmerich, J. Kemp, H.O. Klages, M. Kleifges, J. Kleinfeller, R. Krause, D. Kuempel, G. Kukec Mezek, A. Kuotb Awad, B.L. Lago, D. Lahurd, R.G. Lang, R. Legumina, M.A. Leigui De Oliveira, V. Lenok, A. Letessier-Selvon, I. Lhenry-Yvon, O.C. Lippmann, D. Lo Presti, L. Lopes, R. Lopez, A. Lopez Casado, R. Lorek, Q. Luce, A. Lucero, M. Malacari, G. Mancarella, D. Mandat, B.C. Manning, P. Mantsch, A.G. Mariazzi, I.C. Maris, G. Marsella, D. Martello, H. Martinez, O. Martinez Bravo, M. Mastrodicasa, H.J. Mathes, S. Mathys, J. Matthews, G. Matthiae, E. Mayotte, P.O. Mazur, G. Medina-Tanco, D. Melo, A. Menshikov, K.-. Merenda, S. Michal, M.I. Micheletti, L. Middendorf, L. Miramonti, B. Mitrica, D. Mockler, S. Mollerach, F. Montanet, C. Morello, G. Morlino, M. Mostafa, A.L. Muller, M.A. Muller, S. Muller, R. Mussa, L. Nellen, P.H. Nguyen, M. Niculescu-Oglinzanu, M. Niechciol, D. Nitz, D. Nosek, V. Novotny, L. Nozka, A. Nucita, L.A. Nunez, A. Olinto, M. Palatka, J. Pallotta, M.P. Panetta, P. Papenbreer, G. Parente, A. Parra, M. Pech, F. Pedreira, J. Pkala, R. Pelayo, J. Pena-Rodriguez, L.A.S. Pereira, M. Perlin, L. Perrone, C. Peters, S. Petrera, J. Phuntsok, T. Pierog, M. Pimenta, V. Pirronello, M. Platino, J. Poh, B. Pont, C. Porowski, R.R. Prado, P. Privitera, M. Prouza, A. Puyleart, S. Querchfeld, S. Quinn, R. Ramos-Pollan, J. Rautenberg, D. Ravignani, M. Reininghaus, J. Ridky, F. Riehn, M. Risse, P. Ristori, V. Rizi, W. Rodrigues De Carvalho, J. Rodriguez Rojo, M.J. Roncoroni, M. Roth, E. Roulet, A.C. Rovero, P. Ruehl, S.J. Saffi, A. Saftoiu, F. Salamida, H. Salazar, G. Salina, J.D. Sanabria Gomez, F. Sanchez, E.M. Santos, E. Santos, F. Sarazin, R. Sarmento, C. Sarmiento-Cano, R. Sato, P. Savina, M. Schauer, V. Scherini, H. Schieler, M. Schimassek, M. Schimp, F. Schluter, D. Schmidt, O. Scholten, P. Schovanek, F.G. Schroder, S. Schroder, J. Schumacher, S.J. Sciutto, M. Scornavacche, R.C. Shellard, G. Sigl, G. Silli, O. Sima, R. Smida, G.R. Snow, P. Sommers, J.F. Soriano, J. Souchard, R. Squartini, D. Stanca, S. Stanic, J. Stasielak, P. Stassi, M. Stolpovskiy, A. Streich, F. Suarez, M. Suarez-Duran, T. Sudholz, T. Suomijarvi, A.D. Supanitsky, J. Supik, Z. Szadkowski, A. Taboada, O.A. Taborda, A. Tapia, C. Timmermans, C.J. Todero Peixoto, B. Tome, G. Torralba Elipe, A. Travaini, P. Travnicek, M. Trini, M. Tueros, R. Ulrich, M. Unger, M. Urban, J.F. Valdes Galicia, I. Valino, L. Valore, P. Van Bodegom, A.M. Van Den Berg, A. Van Vliet, E. Varela, B. Vargas Cardenas, D. Veberic, C. Ventura, I.D. Vergara Quispe, V. Verzi, J. Vicha, L. Villasenor, J. Vink, S. Vorobiov, H. Wahlberg, A.A. Watson, M. Weber, A. Weindl, M. Wiedenski, L. Wiencke, H. Wilczynski, T. Winchen, M. Wirtz, D. Wittkowski, B. Wundheiler, L. Yang, A. Yushkov, E. Zas, D. Zavrtanik, M. Zavrtanik, L. Zehrer, A. Zepeda, B. Zimmermann, M. Ziolkowski, Z. Zong, F. Zuccarello. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 100:8(2019 Oct 25), pp. 082003.082003-1-082003.082003-18. [10.1103/PhysRevD.100.082003]

Data-driven estimation of the invisible energy of cosmic ray showers with the Pierre Auger Observatory

L. Caccianiga;M. Giammarchi;L. Miramonti;
2019

Abstract

The determination of the primary energy of extensive air showers using the fluorescence detection technique requires an estimation of the energy carried away by particles that do not deposit all their energy in the atmosphere. This estimation is typically made using Monte Carlo simulations and thus depends on the assumed primary particle mass and on model predictions for neutrino and muon production. In this work we present a new method to obtain the invisible energy from events detected by the Pierre Auger Observatory. The method uses measurements of the muon number at ground level, and it allows us to significantly reduce the systematic uncertainties related to the mass composition and the high energy hadronic interaction models, and consequently to improve the estimation of the energy scale of the Pierre Auger Observatory.
Settore FIS/01 - Fisica Sperimentale
Settore FIS/04 - Fisica Nucleare e Subnucleare
Settore FIS/05 - Astronomia e Astrofisica
25-ott-2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
AABAA02-19.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.79 MB
Formato Adobe PDF
1.79 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/699806
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 18
social impact