This thesis covers some algorithmic aspects of online machine learning and optimization. In Chapter 1 we design algorithms with state-of-the-art regret guarantees for the problem dynamic pricing. In Chapter 2 we move on to an asynchronous online learning setting in which only some of the agents in the network are active at each time step. We show that when information is shared among neighbors, knowledge about the graph structure might have a significantly different impact on learning rates depending on how agents are activated. In Chapter 3 we investigate the online problem of multivariate non-concave maximization under weak assumptions on the regularity of the objective function. In Chapter 4 we introduce a new performance measure and design an efficient algorithm to learn optimal policies in repeated A/B testing.
ALGORITHMS, LEARNING, AND OPTIMIZATION / T.r. Cesari ; supervisor: N. A. CESA BIANCHI ; phd coordinator: P. Boldi. DIPARTIMENTO DI INFORMATICA "Giovanni Degli Antoni", 2020 Jan 31. 32. ciclo, Anno Accademico 2019. [10.13130/cesari-tommaso-renato_phd2020-01-31].
ALGORITHMS, LEARNING, AND OPTIMIZATION
T.R. Cesari
2020
Abstract
This thesis covers some algorithmic aspects of online machine learning and optimization. In Chapter 1 we design algorithms with state-of-the-art regret guarantees for the problem dynamic pricing. In Chapter 2 we move on to an asynchronous online learning setting in which only some of the agents in the network are active at each time step. We show that when information is shared among neighbors, knowledge about the graph structure might have a significantly different impact on learning rates depending on how agents are activated. In Chapter 3 we investigate the online problem of multivariate non-concave maximization under weak assumptions on the regularity of the objective function. In Chapter 4 we introduce a new performance measure and design an efficient algorithm to learn optimal policies in repeated A/B testing.File | Dimensione | Formato | |
---|---|---|---|
phd_unimi_R11657.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Tesi di dottorato completa
Dimensione
1.11 MB
Formato
Adobe PDF
|
1.11 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.