We address local quantum estimation of bilinear Hamiltonians probed by Gaussian states. We evaluate the relevant quantum Fisher information (QFI) and derive the ultimate bound on precision. Upon maximizing the QFI we found that single- and two-mode squeezed vacuum represent an optimal and universal class of probe states, achieving the so-called Heisenberg limit to precision in terms of the overall energy of the probe. We explicitly obtain the optimal observable based on the symmetric logarithmic derivative and also found that homodyne detection assisted by Bayesian analysis may achieve estimation of squeezing with near-optimal sensitivity in any working regime.

Squeezed vacuum as a universal quantum probe / R. Gaiba, M. Paris. - In: PHYSICS LETTERS A. - ISSN 0375-9601. - 373:10(2009), pp. 934-939.

Squeezed vacuum as a universal quantum probe

M. Paris
Ultimo
2009

Abstract

We address local quantum estimation of bilinear Hamiltonians probed by Gaussian states. We evaluate the relevant quantum Fisher information (QFI) and derive the ultimate bound on precision. Upon maximizing the QFI we found that single- and two-mode squeezed vacuum represent an optimal and universal class of probe states, achieving the so-called Heisenberg limit to precision in terms of the overall energy of the probe. We explicitly obtain the optimal observable based on the symmetric logarithmic derivative and also found that homodyne detection assisted by Bayesian analysis may achieve estimation of squeezing with near-optimal sensitivity in any working regime.
Settore FIS/03 - Fisica della Materia
2009
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/69871
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 35
social impact