Peripheral fatigue results from multiple electrochemical and mechanical events in the cell body and the muscle-tendon complex. Combined force and surface electromyographic signal analysis is among the most widely used approaches to describe the behaviour of a fatigued muscle. Advances in technologies and methodological procedures (e.g. laser diffraction, 31P magnetic resonance spectroscopy, shear-wave elastography, tensiomyography, myotonometry, mechanomyography, and high-density surface electromyography) have expanded our knowledge of muscle behaviour before, during, and after a fatiguing task. This review gives an update on recent developments in technologies for investigating the effects of peripheral fatigue linked to skeletal muscle contraction and on mechanistic insights into the electrochemical and mechanical aspects of fatigue. The salient points from the literature analysis are: (1) the electrochemical and mechanical events in the cell (alterations in cross-bridge formation and function and in depolarization of the tubular membrane) precede the events taking place at the muscle-tendon complex (decrease in muscle-tendon unit stiffness); (2) the changes in the fatigued muscle are not homogenous along its length and width but rather reflect a functional compartmentalisation that counteracts the decline in performance; (3) fatigue induces changes in load sharing among adjacent/synergistic muscles. A focus of future studies is to observe how these regional differences occur within single muscle fibres. To do this, a combination of different approaches may yield new insights into the mechanisms underlying muscle fatigue and how the muscle counteracts fatigue.

Peripheral fatigue: new mechanistic insights from recent technologies / E. Ce', S. Longo, E. Limonta, G. Coratella, S. Rampichini, F. Esposito. - In: EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY. - ISSN 1439-6319. - (2019 Nov 19). [Epub ahead of print] [10.1007/s00421-019-04264-w]

Peripheral fatigue: new mechanistic insights from recent technologies

E. Ce'
Primo
;
S. Longo
Secondo
;
E. Limonta;G. Coratella;S. Rampichini
Penultimo
;
F. Esposito
Ultimo
2019

Abstract

Peripheral fatigue results from multiple electrochemical and mechanical events in the cell body and the muscle-tendon complex. Combined force and surface electromyographic signal analysis is among the most widely used approaches to describe the behaviour of a fatigued muscle. Advances in technologies and methodological procedures (e.g. laser diffraction, 31P magnetic resonance spectroscopy, shear-wave elastography, tensiomyography, myotonometry, mechanomyography, and high-density surface electromyography) have expanded our knowledge of muscle behaviour before, during, and after a fatiguing task. This review gives an update on recent developments in technologies for investigating the effects of peripheral fatigue linked to skeletal muscle contraction and on mechanistic insights into the electrochemical and mechanical aspects of fatigue. The salient points from the literature analysis are: (1) the electrochemical and mechanical events in the cell (alterations in cross-bridge formation and function and in depolarization of the tubular membrane) precede the events taking place at the muscle-tendon complex (decrease in muscle-tendon unit stiffness); (2) the changes in the fatigued muscle are not homogenous along its length and width but rather reflect a functional compartmentalisation that counteracts the decline in performance; (3) fatigue induces changes in load sharing among adjacent/synergistic muscles. A focus of future studies is to observe how these regional differences occur within single muscle fibres. To do this, a combination of different approaches may yield new insights into the mechanisms underlying muscle fatigue and how the muscle counteracts fatigue.
Elastography; High-density EMG; Laser diffraction; Magnetic resonance spectroscopy; Mechanomyography; Skeletal muscle fatigue
Settore M-EDF/02 - Metodi e Didattiche delle Attivita' Sportive
19-nov-2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
Cè_review_EJAP.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.45 MB
Formato Adobe PDF
2.45 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/693091
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 31
social impact