In this study, carbon nanofiber-supported Pd nanoparticles were used in the hydrogenation of cinnamaldehyde and in the dehydrogenation of cinnamyl alcohol. The different graphitisation of the surface of the nanofibers and the amount of oxygen functionalisation significantly affected both activity and selectivity to the various reaction products. In particular, a decrease in nanoparticle dimensions and oxygen content resulted in an increase in overall activity for both of the studied reactions. Moreover, the selectivity to hydrocinnamaldehyde enhanced with increasing surface oxygen content in the cinnamaldehyde hydrogenation, while the selectivity to cinnamaldehyde was higher with low-functionalised nanofibers in the cinnamyl alcohol dehydrogenation. Finally, the most active catalyst proved also to be stable in consecutive runs.
The Effect of Carbon Nanofibers Surface Properties in Hydrogenation and Dehydrogenation Reactions / S. Cattaneo, F.J. Sanchez Trujillo, N. Dimitratos, A. Villa. - In: APPLIED SCIENCES. - ISSN 2076-3417. - 9:23(2019 Dec 01), pp. 5061.1-5061.14. [10.3390/app9235061]
The Effect of Carbon Nanofibers Surface Properties in Hydrogenation and Dehydrogenation Reactions
S. CattaneoPrimo
;A. Villa
Ultimo
2019
Abstract
In this study, carbon nanofiber-supported Pd nanoparticles were used in the hydrogenation of cinnamaldehyde and in the dehydrogenation of cinnamyl alcohol. The different graphitisation of the surface of the nanofibers and the amount of oxygen functionalisation significantly affected both activity and selectivity to the various reaction products. In particular, a decrease in nanoparticle dimensions and oxygen content resulted in an increase in overall activity for both of the studied reactions. Moreover, the selectivity to hydrocinnamaldehyde enhanced with increasing surface oxygen content in the cinnamaldehyde hydrogenation, while the selectivity to cinnamaldehyde was higher with low-functionalised nanofibers in the cinnamyl alcohol dehydrogenation. Finally, the most active catalyst proved also to be stable in consecutive runs.File | Dimensione | Formato | |
---|---|---|---|
applsci-09-05061.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
2.01 MB
Formato
Adobe PDF
|
2.01 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.