Nikulin has classified all finite abelian groups acting symplectically on a K3 surface and he has shown that the induced action on the K3 lattice $U^3\oplus E_8(-1)^2$ depends only on the group but not on the K3 surface. For all the groups in the list of Nikulin we compute the invariant sublattice and its orthogonal complement by using some special elliptic K3 surfaces.

Elliptic Fibrations and Symplectic Automorphisms on K3 Surfaces / A. Garbagnati, A. Sarti. - In: COMMUNICATIONS IN ALGEBRA. - ISSN 0092-7872. - 37:10(2009 Oct), pp. 3601-3631. [10.1080/00927870902828785]

Elliptic Fibrations and Symplectic Automorphisms on K3 Surfaces

A. Garbagnati
Primo
;
2009

Abstract

Nikulin has classified all finite abelian groups acting symplectically on a K3 surface and he has shown that the induced action on the K3 lattice $U^3\oplus E_8(-1)^2$ depends only on the group but not on the K3 surface. For all the groups in the list of Nikulin we compute the invariant sublattice and its orthogonal complement by using some special elliptic K3 surfaces.
Elliptic fibrations; K3 surfaces; Lattices; Symplectic automorphisms
ott-2009
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/68890
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 26
social impact