The airway epithelium stretches and relaxes during the normal respiratory cycle, and hyperventilation exaggerates this effect, resulting in changes in lung physiology. In fact, stretching of the airways influences lung function and the secretion of airway mediators, which in turn may cause a potentially injurious inflammatory response. This aim of the present narrative review was to illustrate the current evidence on the importance of mechanical stress in the pathophysiology of lung diseases with a particular focus on chronic obstructive pulmonary disease (COPD) and to discuss how this may influence pharmacological treatment strategies. Overall, treatment selection should be tailored to counterpart the effects of mechanical stress, which influences inflammation both in asthma and COPD. The most suitable treatment approach between a long-acting β2-agonists/long-acting antimuscarinic-agonist (LABA/LAMA) alone or with the addition of inhaled corticosteroids should be determined based on the underlying mechanism of inflammation. Noteworthy, the anti-inflammatory effects of the glycopyrronium/indacaterol combination on hyperinflation and mucociliary clearance may decrease the rate of COPD exacerbations, and it may synergistically improve bronchodilation with a double action on both the cyclic adenosine monophosphate (cAMP) and the acetylcholine pathways.

The airways' mechanical stress in lung disease: Implications for COPD pathophysiology and treatment evaluation / P. Santus, M. Pecchiari, F. Tursi, V. Valenti, M. Saad, D. Radovanovic. - In: CANADIAN RESPIRATORY JOURNAL. - ISSN 1198-2241. - 2019(2019). [10.1155/2019/3546056]

The airways' mechanical stress in lung disease: Implications for COPD pathophysiology and treatment evaluation

P. Santus
Primo
;
M. Pecchiari
Secondo
;
V. Valenti;M. Saad;D. Radovanovic
Ultimo
2019

Abstract

The airway epithelium stretches and relaxes during the normal respiratory cycle, and hyperventilation exaggerates this effect, resulting in changes in lung physiology. In fact, stretching of the airways influences lung function and the secretion of airway mediators, which in turn may cause a potentially injurious inflammatory response. This aim of the present narrative review was to illustrate the current evidence on the importance of mechanical stress in the pathophysiology of lung diseases with a particular focus on chronic obstructive pulmonary disease (COPD) and to discuss how this may influence pharmacological treatment strategies. Overall, treatment selection should be tailored to counterpart the effects of mechanical stress, which influences inflammation both in asthma and COPD. The most suitable treatment approach between a long-acting β2-agonists/long-acting antimuscarinic-agonist (LABA/LAMA) alone or with the addition of inhaled corticosteroids should be determined based on the underlying mechanism of inflammation. Noteworthy, the anti-inflammatory effects of the glycopyrronium/indacaterol combination on hyperinflation and mucociliary clearance may decrease the rate of COPD exacerbations, and it may synergistically improve bronchodilation with a double action on both the cyclic adenosine monophosphate (cAMP) and the acetylcholine pathways.
Settore MED/10 - Malattie dell'Apparato Respiratorio
Settore BIO/09 - Fisiologia
2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
The Airways’ Mechanical Stress.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.61 MB
Formato Adobe PDF
1.61 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/687816
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact