Aicardi-Goutières syndrome (AGS) is an early-onset monogenic encephalopathy characterized by intracranial calcification, leukodystrophy and cerebrospinal fluid lymphocytosis. To date, seven genes have been related to AGS. Among these, IFIH1 encodes for MDA5, a cytosolic double-stranded RNA receptor, and is responsible for AGS type 7. We generated three isogenic iPSC clones, using a Sendai virus-based vector, starting from fibroblasts of a patient carrying a dominant mutation in IFIH1. All lines were characterized for genomic integrity, genetic uniqueness, pluripotency, and differentiation capability. Our clones might offer a good model to investigate AGS7 pathophysiological mechanism and to discover new biomarkers for this condition treatment.

Generation of three isogenic induced Pluripotent Stem Cell lines (iPSCs) from fibroblasts of a patient with Aicardi Goutières Syndrome carrying a c.2471G>A dominant mutation in IFIH1 gene / S. Masneri, G. Lanzi, R.M. Ferraro, C. Barisani, G. Piovani, G. Savio, M. Cattalini, J. Galli, C. Cereda, M. Muzi-Falconi, S. Orcesi, E. Fazzi, S. Giliani. - In: STEM CELL RESEARCH. - ISSN 1873-5061. - 41(2019 Dec). [10.1016/j.scr.2019.101623]

Generation of three isogenic induced Pluripotent Stem Cell lines (iPSCs) from fibroblasts of a patient with Aicardi Goutières Syndrome carrying a c.2471G>A dominant mutation in IFIH1 gene

M. Muzi-Falconi;
2019

Abstract

Aicardi-Goutières syndrome (AGS) is an early-onset monogenic encephalopathy characterized by intracranial calcification, leukodystrophy and cerebrospinal fluid lymphocytosis. To date, seven genes have been related to AGS. Among these, IFIH1 encodes for MDA5, a cytosolic double-stranded RNA receptor, and is responsible for AGS type 7. We generated three isogenic iPSC clones, using a Sendai virus-based vector, starting from fibroblasts of a patient carrying a dominant mutation in IFIH1. All lines were characterized for genomic integrity, genetic uniqueness, pluripotency, and differentiation capability. Our clones might offer a good model to investigate AGS7 pathophysiological mechanism and to discover new biomarkers for this condition treatment.
Settore BIO/11 - Biologia Molecolare
Settore BIO/18 - Genetica
Settore MED/03 - Genetica Medica
dic-2019
nov-2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1873506119302533-main.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/687756
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact